scholarly journals SHsearch - a method for fast remote homology detection

2018 ◽  
Author(s):  
Mohamed Baddar

Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard computational problem with no approach that works well in all cases. Methods based on profile hidden Markov models (HMM) often exhibit relatively higher sensitivity for detecting remote homologies than commonly used approaches. However, calculating similarity scores in profile HMM methods is computationally intensive as they use dynamic programming algorithms. In this paper we introduce SHsearch: a new method for remote protein homology detection. Our method is implemented as a modification of HHsearch: a remote protein homology detection method based on comparing two profile HMMs. The motivation for modification was to reduce the run time of HHsearch significantly with minimal sensitivity loss. SHsearch focuses on comparing the important submodels of the query and database HMMs instead of comparing the complete models. Hence, SHsearch achieves a significant speedup over HHsearch with minimal loss in sensitivity. On SCOP 1.63, SHsearch achieved 88X speedup with 8.2% loss in sensitivity with respect to HHsearch at error rate of 10%, which deemed to be an acceptable tradeoff.

2018 ◽  
Author(s):  
Mohamed Baddar

Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard computational problem with no approach that works well in all cases. Methods based on profile hidden Markov models (HMM) often exhibit relatively higher sensitivity for detecting remote homologies than commonly used approaches. However, calculating similarity scores in profile HMM methods is computationally intensive as they use dynamic programming algorithms. In this paper we introduce SHsearch: a new method for remote protein homology detection. Our method is implemented as a modification of HHsearch: a remote protein homology detection method based on comparing two profile HMMs. The motivation for modification was to reduce the run time of HHsearch significantly with minimal sensitivity loss. SHsearch focuses on comparing the important submodels of the query and database HMMs instead of comparing the complete models. Hence, SHsearch achieves a significant speedup over HHsearch with minimal loss in sensitivity. On SCOP 1.63, SHsearch achieved 88X speedup with 8.2% loss in sensitivity with respect to HHsearch at error rate of 10%, which deemed to be an acceptable tradeoff.


2018 ◽  
Author(s):  
Mohamed Baddar

Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard computational problem with no approach that works well in all cases. Methods based on profile hidden Markov models (HMM) often exhibit relatively higher sensitivity for detecting remote homologies than commonly used approaches. However, calculating similarity scores in profile HMM methods is computationally intensive as they use dynamic programming algorithms. In this paper we introduce SHsearch: a new method for remote protein homology detection. Our method is implemented as a modification of HHsearch: a remote protein homology detection method based on comparing two profile HMMs. The motivation for modification was to reduce the run time of HHsearch significantly with minimal sensitivity loss. SHsearch focuses on comparing the important submodels of the query and database HMMs instead of comparing the complete models. Hence, SHsearch achieves a significant speedup over HHsearch with minimal loss in sensitivity. On SCOP 1.63, SHsearch achieved 88X speedup with 8.2% loss in sensitivity with respect to HHsearch at error rate of 10%, which deemed to be an acceptable tradeoff.


Author(s):  
Thomas Plötz ◽  
Gernot A. Fink

The detection of remote homologies is of major importance for molecular biology applications like drug discovery. The problem is still very challenging even for state-of-the-art probabilistic models of protein families, namely Profile HMMs. In order to improve remote homology detection we propose feature based semi-continuous Profile HMMs. Based on a richer sequence representation consisting of features which capture the biochemical properties of residues in their local context, family specific semi-continuous models are estimated completely data-driven. Additionally, for substantially reducing the number of false predictions an explicit rejection model is estimated. Both the family specific semi-continuous Profile HMM and the non-target model are competitively evaluated. In the experimental evaluation of superfamily based screening of the SCOP database we demonstrate that semi-continuous Profile HMMs significantly outperform their discrete counterparts. Using the rejection model the number of false positive predictions could be reduced substantially which is an important prerequisite for target identification applications.


Sign in / Sign up

Export Citation Format

Share Document