scholarly journals Comparison of peridynamic and phase-field models for dynamic brittle fracture in glassy materials

2020 ◽  
Author(s):  
Javad Mehrmashhadi ◽  
Mohammadreza Bahadori ◽  
Florin Bobaru

We report computational results obtained with three different models for dynamic brittle fracture. The results are compared against recent experimental tests on dynamic fracture/crack branching in glass induced by impact. Two peridynamic models (one using the meshfree discretization, the other being the LS-DYNA’s discontinuous-Galerkin implementation) and a phase-field model lead to interesting and important differences in terms of reproducing the experimentally observed fracture behavior and crack paths. We monitor the crack branching location, the angle of crack branching, the crack propagation speed, and some particular features seen in the experimental crack paths: small twists/kinks near the far edge of the sample. We discuss the models’ performance and provide possible reasons behind the failure of some of the models to correctly predict the observed behavior.

Author(s):  
Youn D. Ha ◽  
Florin Bobaru

The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence [1]: when a crack reaches a critical stage (macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.


Sign in / Sign up

Export Citation Format

Share Document