process zone
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 120)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to express traction in the so-called fracture process zone or failure zone as a function of the crack opening displacement (COD). In earlier work, except for minor exceptions, traction was specified as a function of location. The new model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship connecting the stress intensity factor to crack speed then follows. Consistent with earlier work, it is defined almost entirely by the creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.


2021 ◽  
Author(s):  
Richard A Schapery

Abstract A theory of viscoelastic crack growth developed nearly five decades ago is generalized to express traction in the so-called fracture process zone or failure zone as a function of the crack opening displacement (COD). In earlier work, except for minor exceptions, traction was specified as a function of location. The new model leads to a nonlinear double integral that has to be solved for the COD before crack growth can be predicted. First, a closed-form, accurate approximation is found for a linear elastic body. We then show that this COD may be easily and accurately extended to linear viscoelasticity using a realistic, broad spectrum creep compliance. An analytical relationship connecting the stress intensity factor to crack speed then follows. Consistent with earlier work, it is defined almost entirely by the creep compliance. Five different failure zone tractions are employed; their differences are shown to have little effect on crack growth other than through a speed shift factor. The Appendix discusses initiation of growth.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012014
Author(s):  
Nikita Levichev ◽  
Joost R. Duflou

Abstract Laser cutting is a well-established industrial process for sheet metal applications. However, cutting thick plates is still accompanied by problems because of the characteristic limited process parameter window. Since cutting by means of fiber lasers has become dominant, tailored solutions are required in such systems for industrial applications. The development of a robust real-time monitoring system, which adapts the process parameters according to a specific quality requirement, implies a significant step forward towards automated laser cutting and increases the process robustness and performance. In this work, a coaxial multi-sensor monitoring system is tested for fiber laser cutting of stainless steel thick plates. A high-speed camera and a photodiode sensor have been selected for this investigation. Experiments at different cutting speeds, representing primary cut quality cases, have been conducted and various features of the obtained process zone signals have been examined. Finally, the feasibility of industrial application of the developed setup for high-power fiber laser cutting is discussed, followed by several implementation recommendations.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012018
Author(s):  
Tatiana Fedina ◽  
Jesper Sundqvist ◽  
Alexander F. H. Kaplan

Abstract Laser powder bed fusion (LPBF) generally involves the use of near-spherical powders due to their smooth morphology and enhanced flowability that allow for easier powder layering and laser processing. Non-spherical powders, on the other hand, are more cost-efficient to manufacture, however, the underlying mechanisms of their movement and interparticle interaction on the powder bed are still unclear. Thus, this study reports on the use of irregular iron-based powder material in LPBF, with a specific focus on particle motion and interaction behavior on the powder bed. The powder morphology, sphericity and particle size were analysed using X-ray computed microtomography and scanning electron microscopy. Based on the acquired data and by using a simplified analytical calculation, the influence of the particle shape/size on the particle movement in LPBF was established. High-speed imaging was employed to investigate the particle flow dynamics in the process zone, as well as the powder entrainment phenomenon. Particle entrainment and entrainment distances along the scanning direction were measured for near-spherical and non-spherical powders. The obtained results were compared between the powders, revealing a dissimilar particle transfer behavior. Non-spherical powder had a shorter entrainment distance partly attributed to the weaker drag force acting on these particles.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6572
Author(s):  
Riaz Muhammad

Titanium and its alloys are largely used in various applications due its prominent mechanical properties. However, the machining of titanium alloys is associated with assured challenges, including high-strength, low thermal conductivity, and long chips produced in conventional machining processes, which result in its poor machinability. Advanced and new machining techniques have been used to improve the machinability of these alloys. Ultrasonic vibration assisted turning (UVAT) is one of these progressive machining techniques, where vibrations are imposed on the cutting insert, and this process has shown considerable improvement in terms of the machinability of hard-to-cut alloys. Therefore, selecting the right cutting parameters for conventional and assisted machining processes is critical for obtaining the anticipated dimensional accuracy and improved surface roughness of Ti-alloys. Hence, fuzzy-based algorithms were developed for the ultrasonic vibration assisted turning (UVAT) and conventional turning (CT) of the Ti-6Al7Zr3Nb4Mo0.9Nd alloy to predict the maximum process zone temperature, cutting forces, surface roughness, shear angle, and chip compression ratio for the selected range of input parameters (speed and depth-of-cut). The fuzzy-measured values were found to be in good agreement with the experimental values, indicating that the created models can be utilized to accurately predict the studied machining output parameters in CT and UVAT processes. The studied alloy resulted in discontinued chips in both the CT and UVAT processes. The achieved results also demonstrated a significant decline in the cutting forces and improvements in the surface quality in the UVAT process. Furthermore, the chip discontinuity is enhanced by the UVAT process due to the higher process zone temperature and the micro-impact imposed by the cutting tool on the workpiece.


Sign in / Sign up

Export Citation Format

Share Document