scholarly journals POST-EVENT PLASTIC FAILURE ANALYSIS OF SHEAR FRAMES FROM THEIR PRE-EVENT ELASTIC RESPONSE

2019 ◽  
Author(s):  
Arzhang Alimoradi

We demonstrate that plastic failure loads of shear frames can be inferred from their elastic ambient response. The interstory plastic mechanism force is derived for moment-resisting (rigid) frames as a function of two measured elastic (low-amplitude) frequencies. Structural health monitoring techniques are traditionally devised for “post-event” assessment of structures after exposure of a facility to a potentially damaging loading event such as strong earthquakes or blasts. The knowledge of induced damage, its location, and severity in an otherwise functioningstructure, as important as it is, may be too late for precautionary preparations. Naturally, one is interested in identification of potential failure mechanisms and indicators prior to damaging events when a structure is responding to environmental loads elastically. Are post-event plastic failure loads identifiable from the pre-event ambient response? We answer this question by first deriving interstory shear stiffness values from a set of measured ambient frequencies that are then incorporated into post-elastic equilibrium equations for a closed-form expression of failure loads as a function of measured frequencies. We test our procedure using a typical shear frame example as proof of concept. To extend the relevance and applicability of the proposed procedure we consider uncertainties associated with the measured and estimated quantities and assess their effects in our model output. The closed-form solutions presented allow study of fully-stressed designs and we present the optimal stiffness distribution for such designs as another example. It is anticipated that temporal relevance of structural health monitoring techniques to “pre-event” assessment will be extended in the near future to such promising technologies as earthquake early warning systems.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 711 ◽  
Author(s):  
Frank Mevissen ◽  
Michele Meo

The need for non-destructive testing/structural health monitoring (SHM) is becoming increasingly important for gas turbine manufacturers. Incipient cracks have to be detected before catastrophic events occur. With respect to condition-based maintenance, the complex and expensive parts should be used as long as their performance or integrity is not compromised. In this study, the main failure modes of turbines are reported. In particular, we focus on the turbine blades, turbine vanes and the transition ducts of the combustion chambers. The existing monitoring techniques for these components, with their own particular advantages and disadvantages, are summarised in this review. In addition to the vibrational approach, tip timing technology is the most used technique for blade monitoring. Several sensor types are appropriate for the extreme conditions in a gas turbine, but besides tip timing, other technologies are also very promising for future NDT/SHM applications. For static parts, like turbine vanes and the transition ducts of the combustion chambers, different monitoring possibilities are identified and discussed.


2016 ◽  
Vol 85 ◽  
pp. 1178-1191 ◽  
Author(s):  
Mayorkinos Papaelias ◽  
Liang Cheng ◽  
Maria Kogia ◽  
Abbas Mohimi ◽  
Vassilios Kappatos ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668427 ◽  
Author(s):  
Y Yang ◽  
QS Li ◽  
BW Yan

Recently, the exclusive compulsory technical code (GB 50982-2014) for structural health monitoring of buildings and bridges in China has been developed and implemented. This code covers the majority of the field monitoring methods and stipulates the corresponding technical parameters for monitoring of high-rise structures, large-span spatial structures, bridges and base-isolated structures. This article first presents the comprehensive review and linear comparison of existing structural health monitoring codes and standards. Subsequently, the progress of the codification of GB 50982-2014 is imparted and its main features and specifications are summarized. Finally, in accordance with GB50982-2014, several representative structural health monitoring practical applications of large-scale infrastructures in China are exemplified to illustrate how this national code can bridge the gap between theory and practical applications of structural health monitoring. This technical code is an important milestone in the application of well-established structural health monitoring techniques into the realistic and complex engineering projects. Also, it can provide abundant and authoritative information for practitioners and researchers involving the structural health monitoring techniques.


Sign in / Sign up

Export Citation Format

Share Document