plastic failure
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 12162
Author(s):  
Žilvinas Bazaras ◽  
Mindaugas Leonavičius ◽  
Vaidas Lukoševičius ◽  
Laurencas Raslavičius

The article deals with the determination of the resistance to cyclic loading of the threaded joints of pressure vessels and defective elements according to the failure mechanics criteria. Theoretical and experimental studies do not provide a sufficient basis for the existing calculation methods for the cyclic strength of the threaded joints of pressure vessels. The short crack kinetics in the threaded joints, a shakedown in one of the joint elements of pressure vessels, i.e., in the bolt or stud, has not been studied sufficiently. The calculation methods designed and improved within the study were based on theoretical and experimental investigations and were simplified for convenient application to engineering practice. The findings could be used to investigate the shakedown of studs of a different cross-section with an initiating and propagating crack. Value: the developed model for the assessment of durability of the threaded joints covers the patterns of resistance to cyclic failure (limit states: crack initiation, propagation, final failure) and shakedown (limit states: progressive shape change and plastic failure). Analysis-based solutions of plastic failure conditions and progressive shape change were accurate (the result was reached using a two-sided approach; the solutions were obtained in view of the parameters of the cyclic failure process in the stud (bolt) and based on experimental investigations of the threaded joints).


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jian Hao ◽  
Hua Bian ◽  
Yongkui Shi ◽  
Anfa Chen ◽  
Jiankang Liu ◽  
...  

Borehole pressure relief technology is an effective way to reduce the elastic energy in the surrounding rock of deep roadways, thereby reducing the risk of regional rock bursts. To avoid large deformation of the roadway caused by pressure relief holes with large diameters and insufficient pressure relief with small pore diameters, this study proposes precise pressure relief holes with nonequal diameters in order to achieve strong pressure relief with minimal disturbance based on the abutment pressure distribution pattern. To verify the pressure relief effect of the nonequal diameter holes, numerical simulations were performed in FLAC3D. This study investigated stress field, deformation laws, and plastic failure zone of roadway surrounding rock with 100 mm pressure relief holes, nonequal diameter precision pressure relief hole (100 mm + 300 mm), and 300 mm pressure relief holes. The simulation results show that, as the diameter of the pressure relief hole increases, the coupling effect of evenly spaced adjacent pressure relief holes is strengthened, thus improving the pressure relief efficiency. When pressure relief holes of nonequal diameter are adopted, the stress environment of the surrounding rock is clearly improved compared to100 mm pressure relief holes, and the plastic failure range increased by 2-3 times. The roof-to-floor convergence with nonequal diameter is 30.8% that of 300 mm pressure relief holes and 41% that of 100 mm pressure relief holes. Furthermore, the rib displacement is 30.4% and 46.9% that of 300 mm and 100 mm pressure relief holes, respectively. Thus, precise pressure relief holes with nonequal diameter provide both strong pressure relief associated with large diameter holes and small disturbance of small diameter of small holes. This study provides a reference for precise pressure relief application with pressure relief holes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Liu ◽  
Kaiwen Zhang ◽  
Denghang Tian ◽  
Liming Qu ◽  
Yang Liu

The reverse thrust in the deep site causes the upward propagation of stress and displacement in the overlying soil. The displacement field around the fault zone is maximum. As the spatial location becomes shallower, the soil displacement gradually becomes smaller. The deformation of the overlying soil is mainly affected by the vertical dislocation of the fracture zone. The monitoring curve showed no abrupt change value, indicating that the top surface of soil did not rupture, and only the influence of fault on the displacement transfer of the top surface of the soil. When a creeping dislocation occurs in the bottom fracture zone, the maximum principal stress of the upper boundary of the deep site is dominated by compressive stress. The maximum principal stress of the soil on both sides of the fracture zone has a maximum value, and the soil on the right side of the fracture zone has a significant compression effect. The maximum principal stress monitoring curve varies greatly, indicating the plastic failure development of soil, which is the same as the research results of the plastic failure zone in the following paper. When the bottom fracture zone starts to move, the plastic zone first appears at the junction area between the front end of the bottom fracture zone and the overlying soil. As the amount of dislocation of the fracture zone increases, the plastic zone continues to extend into the inner soil. The left and right sides of the fracture zone show tensile failure and compression failure, respectively. The development of the upper envelope curve in the plastic zone of the overlying soil satisfies the Boltzmann equation with a first-order exponential growth, while the development of the lower envelope curve satisfies the Gauss equation with a second-order exponential growth. The development curve equation of the plastic zone is verified according to the residual figures of the fitting result and the correlation parameters.


Author(s):  
Kunio Hasegawa ◽  
David Dvorak ◽  
Vratislav Mares ◽  
Bohumir Strnadel ◽  
Yinsheng Li

Abstract Fully plastic failure stresses for circumferentially surface cracked pipes subjected to tensile loading can be estimated by means of limit load criteria based on the net-section stress approach. Limit load criteria of the first type (labelled LLC-1) were derived from the balance of uniaxial forces. Limit load criteria of the second type are given in Section XI of the ASME (American Society of Mechanical Engineering) Code, and were derived from the balance of bending moment and axial force. These are labelled LLC-2. Fully plastic failure stresses estimated by using LLC-1 and LLC-2 were compared. The stresses estimated by LLC-1 are always larger than those estimated by LLC-2. From the literature survey of experimental data, failure stresses obtained by both types of LLC were compared with the experimental data. It can be stated that failure stresses calculated by LLC-1 are better than those calculated by LLC-2 for shallow cracks. On the contrary, for deep cracks, LLC-2 predictions of failure stresses are fairly close to the experimental data. Furthermore, allowable circumferential crack sizes obtained by LLC-1 were compared with the sizes given in Section XI of the ASME Code. The allowable crack sizes obtained by LLC-1 are larger than those obtained by LLC-2. It can be stated that the allowable crack size for tensile stress depends on the condition of constraint of the pipe, and the allowable cracks given in Section XI of the ASME Code are conservative.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 648
Author(s):  
Mohammad Alembagheri ◽  
Maria Rashidi ◽  
Amin Yazdi ◽  
Bijan Samali

This paper aims to numerically investigate the cyclic behavior of retrofitted and non-retrofitted circular hollow section (CHS) T-joints under axial loading. Different joints with varying ratios of brace to chord radius are studied. The effects of welding process on buckling instability of the joints in compression and the plastic failure in tension are considered. The finite element method is employed for numerical analysis, and the SAC protocol is considered as cyclic loading scheme. The CHS joints are retrofitted with different numbers of Fiber Reinforced Polymer (FRP) layers with varying orientation. The results show that the welding process significantly increases the plastic failure potential. The chord ovalization is the dominant common buckling mode under the compression load. However, it is possible to increase the energy dissipation of the joints by utilizing FRP composite through changing the buckling mode to the brace overall buckling.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jingke Wu ◽  
Yun Dong ◽  
Yang Jiang ◽  
Yushun Yang ◽  
Huasheng Sun ◽  
...  

To solve the control problem of the surrounding rock of gob-side entry retaining under typical roof conditions in deep mines, we conduct theoretical analysis, numerical simulation, and actual measurements. Starting from the plastic zone of the surrounding rock, the serious damage area, the degree and scope of damage, and the dynamic evolution process of the surrounding rock of the gob-side entry retaining are systematically analyzed under four typical roof conditions in deep mines; the expansion and evolution laws of the plastic zone of the surrounding rock are expounded; and a key control technology is proposed. The results indicate that (1) the plastic failure of surrounding rock was concentrated mainly on the coal side and on the floor, especially in the filling body. The plastic zone of the surrounding rock of the gob-side entry retaining with the thick immediate roof was widely distributed and deep, but the plastic failure of the filling body was not obvious. The plastic failure of the surrounding rock of the gob-side entry retaining with the compound roof was mainly concentrated on the roof, filling body, and floor of the filling area. (2) According to the typical roof conditions of the deep gob-side entry retaining, the order of the degree of damage to the surrounding rock was as follows: thick immediate roof, compound roof, thin immediate roof, and thick-hard roof. (3) A “multisupport structure” control system is proposed for the gob-side entry retaining in a deep mine, including measures for enhancing the bearing performance of the anchorage system, increasing the strength of the cataclastic coal-rock mass, enhancing the bearing capacity of the filling body, and increasing the bearing capacity on the tunnel side. The proposed technology was applied to the deep gob-side entry retaining project in the east area of Panyi Mine, and it effectively fulfilled the reuse requirements of gob-side entry retaining in deep mines.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Cheng Wang ◽  
Zuqiang Xiong ◽  
Chun Wang ◽  
Yuli Wang ◽  
Yaohui Zhang

This research presents the grouting method of preventing rib sloughage which severely impacts mine safety and longwall retreat speed in thick coal seam with numerical simulation and laboratory tests. Based on the analysis of the plastic failure mode of five types of coal seam, roof strata ahead of the longwall face, and fractures developed in the coal seam, the following results are drawn, the range and degree of plastic failure generated in the coal seam and roof strata ahead of the longwall face gradually decreased as the coal mass strength increased; the grouting boreholes are essentially laid out within the coal rib instead of the roof. For a particular case of a coal mine in Shanxi province, a novel cement-based material was grouted, which fulfilled the reinforcement requirements under the tectonic stress regions and front abutment zones. Besides, the grouting borehole construction requested predrilled boreholes, full borehole intubation, lengthened hole sealing, and multiple-step drilling and grouting. This study can provide a theoretical framework of a design overview and practical basis for similar mining conditions in other coalfields.


Sign in / Sign up

Export Citation Format

Share Document