How Does Semantic Knowledge Impact Working Memory Maintenance? Computational and Behavioral Investigations

2020 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Sophie Portrat ◽  
Benoit Lemaire

It is now firmly established that long-term memory knowledge, such as semantic knowledge, supports the temporary maintenance of verbal information in Working Memory (WM). This support from semantic knowledge is well-explained by models assuming that verbal items are directly activated in long-term memory, and that this activation provides the representational basis for WM maintenance. However, the exact mechanisms underlying semantic influence on WM performance remain poorly understood. We manipulated the presence of between-item semantic relatedness in an immediate serial recall task, by mixing triplets composed of semantically related and unrelated items (e.g. leaf – tree – branch – wall – beer – dog; hand – father – truck – cloud – sky – rain). Compared to unrelated items, related items were better recalled, as had been classically observed. Critically, semantic relatedness also impacted WM maintenance in a complex manner, as observed by the presence of proactive benefit effects on subsequent unrelated items, and the absence of retroactive effects. The complexity of these interactions is well-captured by TBRS*-S, a decay-based computational architecture in which the activation occurring in long-term memory is described. The present study suggests that semantic knowledge can be used to free up WM resources that can be reallocated for maintenance purposes, and supports models postulating that long-term memory knowledge constrains WM maintenance processes.

2019 ◽  
Vol 30 (5) ◽  
pp. 2997-3014 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Laurens Van Calster ◽  
Lucie Attout ◽  
Christophe Phillips ◽  
Steve Majerus

Abstract An influential theoretical account of working memory (WM) considers that WM is based on direct activation of long-term memory knowledge. While there is empirical support for this position in the visual WM domain, direct evidence is scarce in the verbal WM domain. This question is critical for models of verbal WM, as the question of whether short-term maintenance of verbal information relies on direct activation within the long-term linguistic knowledge base or not is still debated. In this study, we examined the extent to which short-term maintenance of lexico-semantic knowledge relies on neural activation patterns in linguistic cortices, and this by using a fast encoding running span task for word and nonword stimuli minimizing strategic encoding mechanisms. Multivariate analyses showed specific neural patterns for the encoding and maintenance of word versus nonword stimuli. These patterns were not detectable anymore when participants were instructed to stop maintaining the memoranda. The patterns involved specific regions within the dorsal and ventral pathways, which are considered to support phonological and semantic processing to various degrees. This study provides novel evidence for a role of linguistic cortices in the representation of long-term memory linguistic knowledge during WM processing.


2020 ◽  
pp. 116-149 ◽  
Author(s):  
Klaus Oberauer

Working memory provides a medium for building and manipulating new representations that control our thoughts and actions. To fulfil this function, a working memory system needs to meet six requirements: (1) it must have a mechanism for rapidly forming temporary bindings to combine elements into new structures; (2) it needs a focus of attention for selectively accessing individual elements for processing; (3) it must hold both declarative representations of what is the case, and procedural representations of how to act on the current situation; (4) it needs a process for rapid updating, including rapid removal of outdated contents. Moreover, contents of working memory (5) need to be shielded from interference from long-term memory, while (6) working memory should be able to use information in long-term memory when it is useful. This chapter summarizes evidence in support of these mechanisms and processes. It presents three computational models that each implement some of these mechanisms, and explains different subsets of empirical findings about working memory: the SOB-CS model accounts for behaviour in tests of immediate serial recall, including complex-span tasks. The interference model explains data from a common test of visual working memory, the continuous-reproduction task. The set-selection model explains how people learn memory sets and task sets, how these sets are retrieved from long-term memory, and how these mechanisms enable switching between memory sets and task sets.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2007 ◽  
Author(s):  
Nathan S. Rose ◽  
Joel Myerson ◽  
Henry L. Roediger ◽  
Sandra Hale

2020 ◽  
Author(s):  
Sam Verschooren ◽  
Yoav Kessler ◽  
Tobias Egner

An influential view of working memory (WM) holds that its’ contents are controlled by a selective gating mechanism that allows for relevant perceptual information to enter WM when opened, but shields WM contents from interference when closed. In support of this idea, prior studies using the reference-back paradigm have established behavioral costs for opening and closing the gate between perception and WM. WM also frequently requires input from long-term memory (LTM), but it is currently unknown whether a similar gate controls the selection of LTM representations into WM, and how WM gating of perceptual vs. LTM sources of information relate to each other. To address these key theoretical questions, we devised a novel version of the reference-back paradigm, where participants switched between gating perceptual and LTM information into WM. We observed clear evidence for gate opening and closing costs in both cases. Moreover, the pattern of costs associated with gating and source-switching indicated that perceptual and LTM information is gated into WM via a single gate, and rely on a shared source-selection mechanism. These findings extend current models of WM gating to encompass LTM information, and outline a new functional WM architecture.


2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


Author(s):  
Amberkar Vittal Rao Mohanbabu ◽  
Meena Kumari Kamal Kishore ◽  
Bangalore Revanna Chandrashekar ◽  
Hoskeri Dakappa Pradeepa ◽  
Rockson Christopher ◽  
...  

AbstractThe goal of this study was to evaluate the cerebroprotective and cognition-enhancing activities of the aqueousReference or working memory and long-term memory in rodents were tested by experimental paradigms like passive avoidance (PA) and T-maze (TM), respectively. TM and Morris water maze (MWM) were used to screen putative spatial or localization task and the navigation memory-enhancing activities ofThe higher dose (20 mg/kg) of plant extract exhibited significant (p<0.01) antiamnesic activity in the PA and TM models vs. the control. In the MWM test, at probe trial,These results partly substantiate the traditional use of


Sign in / Sign up

Export Citation Format

Share Document