Observational studies of low-frequency oscillations in the Southern Hemisphere

1988 ◽  
Author(s):  
Charles Edward Graves
2021 ◽  
pp. 105444
Author(s):  
Chun-Chuan Chen ◽  
Antonella Macerollo ◽  
Hoon-Ming Heng ◽  
Ming-Kuei Lu ◽  
Chon-Haw Tsai ◽  
...  

2020 ◽  
Vol 35 (6) ◽  
pp. 4666-4677
Author(s):  
Piyush Warhad Pande ◽  
Saikat Chakrabarti ◽  
Suresh Chandra Srivastava ◽  
Subrata Sarkar

2005 ◽  
Vol 23 (8) ◽  
pp. 2803-2811 ◽  
Author(s):  
J. B. Cao ◽  
Z. X. Liu ◽  
J. Y. Yang ◽  
C. X. Yian ◽  
Z. G. Wang ◽  
...  

Abstract. LFEW is a low frequency electromagnetic wave detector mounted on TC-2, which can measure the magnetic fluctuation of low frequency electromagnetic waves. The frequency range is 8 Hz to 10 kHz. LFEW comprises a boom-mounted, three-axis search coil magnetometer, a preamplifier and an electronics box that houses a Digital Spectrum Analyzer. LFEW was calibrated at Chambon-la-Forêt in France. The ground calibration results show that the performance of LFEW is similar to that of STAFF on TC-1. The first results of LFEW show that it works normally on board, and that the AC magnetic interference of the satellite platform is very small. In the plasmasphere, LFEW observed the ion cyclotron waves. During the geomagnetic storm on 8 November 2004, LFEW observed a wave burst associated with the oxygen ion cyclotron waves. This observation shows that during geomagnetic storms, the oxygen ions are very active in the inner magnetosphere. Outside the plasmasphere, LFEW observed the chorus on 3 November 2004. LFEW also observed the plasmaspheric hiss and mid-latitude hiss both in the Southern Hemisphere and Northern Hemisphere on 8 November 2004. The hiss in the Southern Hemisphere may be the reflected waves of the hiss in the Northern Hemisphere.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e109202 ◽  
Author(s):  
Hwasil Moon ◽  
Changki Kim ◽  
Minhyuk Kwon ◽  
Yen Ting Chen ◽  
Tanya Onushko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document