scholarly journals CONNECTION BETWEEN HIGH-STRENGTH CONCRETE-FILLED SQUARE TUBULAR STEEL COLUMN AND STEEL BEAM, REINFORCED WITH INTERNAL DIAPHRAGM : Elasto-plastic behavior of the connection and subassemblage frame

Author(s):  
Toshiyuki FUKUMOTO ◽  
Yoshikazu SAWAMOTO ◽  
Koji MORITA
2017 ◽  
Vol 21 (5) ◽  
pp. 658-674 ◽  
Author(s):  
Xizhi Zhang ◽  
Jiawei Zhang ◽  
Xuejian Gong ◽  
Shaohua Zhang

This study proposes a new type of fabricated hybrid frame structure, which is a prefabricated high-strength concrete tube column–steel beam joint hybrid frame structure. A series of six full-scale cruciform prefabricated high-strength concrete tube column–H-shaped beam joint specimens was tested under cyclic loading to investigate the seismic performance of the new fabricated hybrid frame structure. We designed the connection in the manner that the capacity of beam was higher than that of the column. The cracking pattern, failure modes, energy dissipation capacity, and strain profiles of the specimens were obtained and discussed. The test results showed that some specimens collapsed due to ring plate tearing failure and weld fracture, while other specimens collapsed due to column flexural failure. Shear connectors (i.e. shear studs and shear reinforcement) could ensure the reliable transmission of shear force, and the compound stirrups can effectively improve bearing capacity and joint ductility. The stiffness degradation of specimens was smooth with a linearly decreasing trend because of the prestressed reinforcement. The new joints could be applied in a seismic region.


2019 ◽  
Vol 5 (6) ◽  
pp. 1384-1394
Author(s):  
Shakir Mahmood Hadeed ◽  
Ahmad Jabbar Hussain Alshimmeri

Currently, the castellated steel beams are used widely because of their useful structural applications and serviceable performance due to their good significant properties such as light weight, facility in construction, materials economize and strength. The castellated steel beam fabricated from its origin solid beam (I-beam) by cutting its web in a zigzag path and then re-joined the two halve by welding so the height of the castellated beam expanded about 50%. The aim of this paper is to study the effect of castellation with and without strengthening on the structural behaviour of castellated beams and compare the results with the origin solid steel beam. Three castellated beams with deferent configuration in addition to solid beam subjected to two equal point loads at mid third of span with simple support condition were analysed numerically using finite element analysis by Abaqus software virgin (6.14.5) .The results show that the load carrying capacity values of castellated steel beams that represent (second, third& fourth) models were increased by (39.11,105.95&124.77) % respectively compared with origin solid beam  due to increase beams stiffness after castellation and strengthening process, while mid-span deflection values at service load were decreased by (36.36,9.10&27.27) % respectively comparing with the origin solid steel beam due to increasing section dimensions and stiffness after castellation process and using strengthening technique respectively. Also it was seen that the maximum ultimate moment and ductility were observed in the fourth model that strengthened by high strength concrete and lacing reinforcement so they increased by 124.79% and 165.65% respectively as compare to reference beam, while the third model that strengthened by high strength concrete was stiffer than other beams.


2021 ◽  
pp. 103878
Author(s):  
Mohamed Sifan ◽  
Perampalam Gatheeshgar ◽  
Satheeskumar Navaratnam ◽  
Brabha Nagaratnam ◽  
Keerthan Poologanathan ◽  
...  

2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

Sign in / Sign up

Export Citation Format

Share Document