scholarly journals NONLINEAR FINITE ELEMENT DYNAMIC ANALYSIS OF A PRESTRESSED CONCRETE CONTAINMENT VESSEL MODEL

Author(s):  
Kazuhiro NAGANUMA ◽  
Osamu KURIMOTO ◽  
Hiroaki ETO
2018 ◽  
Vol 9 (5) ◽  
pp. 587-602
Author(s):  
Jiawei Wang ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jigang Han ◽  
Jinliang Liu

Purpose Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues. Design/methodology/approach Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates. Findings Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results. Originality/value Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.


2011 ◽  
Vol 11 (02) ◽  
pp. 379-399 ◽  
Author(s):  
Z.-C. WANG ◽  
W.-X. REN

A beam segment element formulation is presented for the dynamic analysis of prestressed concrete box-girder bridges, which can conveniently takes into account the effects of the restrained torsion, distortion, transverse local deformation, diaphragms, and prestressing tendons of prestressed concrete box-girder bridges. The spatial displacement field of the beam segment element is directly represented by the nodal degrees of freedom of the corner points. The stiffness matrix and mass matrix of such a segment element are formulated based on the principle of stationary total potential energy in elastic system dynamics. The proposed beam segment element formulation is then implemented to carry out the free vibration analysis of a real case prestressed concrete box-girder bridge. In terms of both natural frequencies and mode shapes, the formulation is verified by the three-dimensional (3D) finite element analysis using a commercial package. It is demonstrated that the proposed beam segment element formulation is suitable and efficient for the dynamic analysis of prestressed concrete box-girder bridges with the advantages of less element numbers and enough accuracy. It is expected that this methodology can be an effective approach for the further dynamic response analysis under all kinds of dynamic loads such as earthquakes, winds, vehicles, and their interaction.


Sign in / Sign up

Export Citation Format

Share Document