scholarly journals ANALYSIS OF THE DISTRIBUTION OF SOUND PRESSURE LEVEL OF THE AIR LAYER WHEN DRY DOUBLE FLOOR MADE AN IMPACT IN THE HEAVY WEIGHT IMPACT SOURCE USING THE FINITE ELEMENT METHOD

2013 ◽  
Vol 19 (42) ◽  
pp. 625-630
Author(s):  
Takeshi ISHIMARU ◽  
Fumihiro TAKAKURA ◽  
Yasuhiro YAMASHITA
Author(s):  
Wakae Kozukue ◽  
Ichiro Hagiwara ◽  
Yasuhiro Mohri

In this paper the reduction analysis of the so-called ‘booming noise’, which occurs due to the resonance of a vehicle cabin, is tried to carry out by using the finite element method. For the reduction method a Helmholtz resonator, which is well known in the field of acoustics, is attached to a vehicle cabin. The resonance frequency of a Helmholtz resonator can be varied by adjusting the length of its throat. The simply shaped Helmholtz resonator is set up to the back of the cabin according to the resonance frequency of the cabin and the frequency response of the sound pressure at a driver’s ear position is calculated by using the finite element method. It is confirmed that the acoustical characteristics of the cabin is changed largely by attaching the resonator and the sound quality is quite varied. The resonance frequency of the resonator can be considered to follow the acoustical characteristics of the cabin by using an Origami structure as a throat. So, in the future the analysis by using an Origami structure Helmholtz resonator should be performed.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document