Map Showing Slope Failures and Slope-Movement-Prone Areas in Vermont

10.3133/i2682 ◽  
2001 ◽  
2021 ◽  
Vol 130 (2) ◽  
Author(s):  
Jyothsna Palle ◽  
Satyavani Nittala ◽  
Kiranmai Samudrala

2021 ◽  
Vol 13 (8) ◽  
pp. 1564
Author(s):  
Pietro Miele ◽  
Mariano Di Di Napoli ◽  
Luigi Guerriero ◽  
Massimo Ramondini ◽  
Chester Sellers ◽  
...  

In most countries, landslides have caused severe socioeconomic impacts on people, cities, industrial establishments, and lifelines, such as highways, railways, and communication network systems. Socioeconomic losses due to slope failures are very high and they have been growing as the built environment expands into unstable hillside areas under the pressures of growing populations. Human activities as the construction of buildings, transportation routes, dams, and artificial canals have often been a major factor for the increasing damage due to slope failures. When recovery actions are not durable from an economic point of view, increasing the population’s awareness is the key strategy to reduce the effects of natural and anthropogenic events. Starting from the case study of the Pan-American Highway (the Ecuadorian part), this article shows a multi-approach strategy for infrastructure monitoring. The combined use of (i) DInSAR technique for detection of slow ground deformations, (ii) field survey activities, and (iii) the QPROTO tool for analysis of slopes potentially prone to collapse allowed us to obtain a first cognitive map to better characterize 22 km of the highway between the cities of Cuenca and Azogues. This study is the primary step in the development of a landslide awareness perspective to manage risk related to landslides along infrastructure corridors, increasing user safety and providing stakeholders with a management system to plan the most urgent interventions and to ensure the correct functionality of the infrastructure.


2000 ◽  
pp. 221-229
Author(s):  
Hiroyuki SAKAKIBARA ◽  
Kazumasa KURAMOTO ◽  
Hideaki KIKUCHI ◽  
Hirotaka NAKAYAMA ◽  
Hiromi TETSUGA ◽  
...  

2005 ◽  
Vol 38 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Mary C. Bourke ◽  
Martin Thorp
Keyword(s):  

2013 ◽  
Vol 50 (12) ◽  
pp. 1236-1249 ◽  
Author(s):  
C.Y. Cheuk ◽  
K.K.S. Ho ◽  
A.Y.T. Lam

Soil nailing has been used to upgrade substandard loose fill slopes in Hong Kong. Due to the possibility of static liquefaction failure, a typical design arrangement comprises a structural slope facing anchored by a grid of soil nails bonded into the in situ ground. Numerical analyses have been conducted to examine the influence of soil nail orientations on the behaviour of the ground nail–facing system. The results suggest that the use of steeply inclined nails throughout the entire slope could avoid global instability, but could lead to significant slope movement especially when sliding failure prevails, for instance, due to interface liquefaction. The numerical analyses also demonstrate that if only subhorizontal nails are used, the earth pressure exerted on the slope facing may cause uplift failure of the slope cover. To overcome the shortcomings of using soil nails at a single orientation, a hybrid nail arrangement comprising nails at two different orientations is proposed. The numerical analyses illustrate that the hybrid nail arrangement would limit slope movement and enhance the robustness of the system.


2013 ◽  
Author(s):  
Julien Cohen-Waeber ◽  
Nicholas Sitar ◽  
Roland Bürgmann

2018 ◽  
Vol 123 (4) ◽  
pp. 658-677 ◽  
Author(s):  
Sibylle Knapp ◽  
Adrian Gilli ◽  
Flavio S. Anselmetti ◽  
Michael Krautblatter ◽  
Irka Hajdas

Landslides ◽  
2010 ◽  
Vol 7 (3) ◽  
pp. 325-338 ◽  
Author(s):  
Nobutomo Osanai ◽  
Takeshi Shimizu ◽  
Kazumasa Kuramoto ◽  
Shinichi Kojima ◽  
Tomoyuki Noro

2004 ◽  
Vol 4 (1) ◽  
pp. 147-152 ◽  
Author(s):  
D. N. Petley

Abstract. Forecasting the occurrence of large, catastrophic slope failures remains very problematic. It is clear that in order advance this field a greater understanding is needed of the processes through which failure occurs. In particular, there is a need to comprehend the processes through which a rupture develops and propagates through the slope, and the nature of the inter-relationship between the stress and strain states of the landslide mass. To this end, a detailed analysis has been undertaken of the movement records for the Selborme Cutting slope failure, in which failure was deliberately triggered through pore pressure elevation. The data demonstrate that it is possible to determine the processes occurring in the basal region of the landslide, and thus controlling the movement of the mass, from the surface movement patterns. In particular, it is clear that the process of rupture development and propagation has a unique signature, allowing the development of the rupture to be traced from detailed surface monitoring. For landslides undergoing first time failure through rupture propagation, this allows the prediction of the time of failure as per the "Saito" approach. It is shown that for such predictions to be reliable, data from a number of points across the landslide mass are needed. Interestingly, due to the complex stress regime in that region, data from the crown may not be appropriate for failure prediction. Based upon these results, the application of new techniques for the detailed assessment of spatial patterns of the development of strain may potentially allow a new insight into the development of rupture surfaces and may ultimately permit forecasting of the temporal occurrence of failure.


Sign in / Sign up

Export Citation Format

Share Document