Temperature, thermal conductivity, heat flow, and radiogenic heat production from unconsolidated sediments of the Imperial Valley, California

1984 ◽  
Author(s):  
J.H. Sass ◽  
S.P. Galanis ◽  
A.H. Lachenbruch ◽  
B.V. Marshall ◽  
R.J. Munroe
Author(s):  
Valiya Hamza ◽  
Fabio Vieira ◽  
Jorge Luiz dos Santos Gomes ◽  
Suze Guimaraes ◽  
Carlos Alexandrino ◽  
...  

An updated heat-flow database for Brazil is presented providing details of measurements carried out at 406 sites. It has been organized as per the scheme proposed by the International Heat Flow Commission. The data sets refer to results obtained using methods referred to as interval temperature logs (ITL), underground mines (UMM), bottom-hole temperatures (BHT), stable bottom temperatures (SBT) and water wells (AQT). The compilation provides information on depths of temperature logs, gradient determinations, measurements of thermal conductivity and radiogenic heat production. Also included is information on the methods employed and error estimates of the main parameters. A new heat flow map of Brazil has been derived based on the updated data set. A multipronged system has been employed in citing references, where the indexing scheme adopted follows chronological order. It provides information not only on the primary work concerning heat flow determination but also later improvements in measurements of main parameters (temperature gradients, thermal conductivity and radiogenic heat production) as well as techniques employed in data analysis.


1989 ◽  
Vol 26 (4) ◽  
pp. 845-852 ◽  
Author(s):  
J. C. Mareschal ◽  
C. Pinet ◽  
C. Gariépy ◽  
C. Jaupart ◽  
G. Bienfait ◽  
...  

New heat flow density (HFD) measurements were performed at 10 sites in Quebec. For five of the sites located in the Superior Province, the heat flow density varies between 24 and 35 mW/m2 (26 and 37 mW/m2 after adjustment for Pleistocene climatic variations). In the Grenville Province, the values obtained range between 25 and 28 mW/m2 (29 and 31 mW/m2 after adjustment). For two nearby sites in the Gaspé region (Appalachians), the heat flow density is 47 mW/m2 (48 mW/m2 after adjustment). Radiogenic heat production was also measured. At the sites located in the meta-volcano-sedimentary sequences of the Superior Province, the heat production is low (0.1–0.6 μW/m3) and it does not always correlate with the surface heat flow. In the Grenville Province, the HFD is close to (slightly higher than) the reduced heat flow of the Superior. The higher HFD in the Appalachians is partly explained by the higher crustal heat production, and partly by higher deep heat flow.


Sign in / Sign up

Export Citation Format

Share Document