Distribution of thorium, uranium, and potassium in igneous rocks of the Boulder batholith region, Montana, and its bearing on radiogenic heat production and heat flow

1969 ◽  
Author(s):  
R.I. Tilling ◽  
David Gottfried
2017 ◽  
Vol 8 (5) ◽  
pp. 919-940 ◽  
Author(s):  
D. Hasterok ◽  
J. Webb

1989 ◽  
Vol 26 (4) ◽  
pp. 845-852 ◽  
Author(s):  
J. C. Mareschal ◽  
C. Pinet ◽  
C. Gariépy ◽  
C. Jaupart ◽  
G. Bienfait ◽  
...  

New heat flow density (HFD) measurements were performed at 10 sites in Quebec. For five of the sites located in the Superior Province, the heat flow density varies between 24 and 35 mW/m2 (26 and 37 mW/m2 after adjustment for Pleistocene climatic variations). In the Grenville Province, the values obtained range between 25 and 28 mW/m2 (29 and 31 mW/m2 after adjustment). For two nearby sites in the Gaspé region (Appalachians), the heat flow density is 47 mW/m2 (48 mW/m2 after adjustment). Radiogenic heat production was also measured. At the sites located in the meta-volcano-sedimentary sequences of the Superior Province, the heat production is low (0.1–0.6 μW/m3) and it does not always correlate with the surface heat flow. In the Grenville Province, the HFD is close to (slightly higher than) the reduced heat flow of the Superior. The higher HFD in the Appalachians is partly explained by the higher crustal heat production, and partly by higher deep heat flow.


Sign in / Sign up

Export Citation Format

Share Document