Non-equilibrium Statistical Mechanics of the Stochastic Navier-Stokes Equations and Geostrophic Turbulence

Author(s):  
Freddy Bouchet ◽  
Cesare Nardini ◽  
Tomás Tangarifec
Author(s):  
Adrian F. Tuck

The Earth’s atmosphere is far from equilibrium; it is constantly in motion from the combined effects of gravity and planetary rotation, is constantly absorbing and emitting radiation, and hosts ongoing chemical reactions which are ultimately fuelled by solar photons. It has fluxes of material and energy across its boundaries with the planetary surface, both terrestrial and marine, and also emits a continual outward flux of infrared photons to space. The gaseous atmosphere is manifestly a kinetic system, meaning that its evolution must be described by time dependent differential equations. The equations doing this under the continuum fluid approximation are the Navier–Stokes equations, which are not analytically solvable and which support many non-linear instabilities. We have also seen that the generation of turbulence is a fundamentally difficult yet central feature of air motion, originating on the molecular scale. Non-equilibrium statistical mechanics may offer insight into which steady states a system far from equilibrium as a result of fluxes and anisotropies may migrate, without the need for detailed solution of the explicit path between the states. However, it does not seem possible to demonstrate mathematically that such steady states exist for the atmosphere. A physical view of the planet’s past and probable future suggests that the past and future evolution of the sun and its outgoing fluxes of energy may mean that the air-water-earth system may never have been or will ever be in a rigorously defined steady state. Also, to the human population, the detailed, time-dependent evolution is what matters in many respects. Nevertheless, non-equilibrium statistical mechanics is a discipline which should be applicable in principle to yield information about approximate steady states. These steady states may as a practical matter be definable from the observational record, for example the ice ages and the intervening periods evident in the geological record, or between states with two differing global average abundances of a radiatively active gas such as carbon dioxide. There has been great progress recently in non-equilibrium statistical mechanics, stemming from recent work on the concept of the maximization of entropy production.


2013 ◽  
Vol 284-287 ◽  
pp. 795-799
Author(s):  
Fa Qing Fan ◽  
Pei Yong Wang

High-speed and high-temperature are the characteristics of the flow field in scramjet engine; the regular non-slip wall boundary condition requires zero speed at wall; in the same time, the material temperature limit does not allow high wall temperature; therefore the velocity gradient and temperature gradient in the engine boundary layer are huge. If these gradients are too large, the traditional assumption of the local thermal equilibrium in the fluid will fail, the Navier-Stokes equations are no longer valid in the boundary layer. For the first time, the non-equilibrium flow phenomena in Scramjet engine is studied here. Appropriate turbulence model and fine grid are used to analyze the turbulent boundary layer of the Hyshot scramjet engine with three different operating conditions. The result of the CFD simulation shows that the local Knudsen number in the engine boundary layer is greater than the critical value with the operating conditions 40Km/Ma8 and 30Km/Ma8; they are non-equilibrium flow and the Navier-Stokes equations fails. Special treatment of the boundary conditions are needed for these kinds of flow. With the operating condition of 20Km/Ma6, the local thermal equilibrium condition is observed and conventional CFD method is valid.


2020 ◽  
Author(s):  
Junmou Shen ◽  
Hongbo Lu ◽  
Ruiqu Li ◽  
Xing Chen ◽  
Handong Ma

Abstract The high enthalpy nozzle converts the high enthalpy stagnation gas into the hypervelocity free flow. The flow region of the high enthalpy nozzle consists of three parts: an equilibrium region upstream of the throat, a non-equilibrium region near the throat, and a frozen region downstream of the throat. Here we propose to consider the thermochemical non-equilibrium scale effects in the high enthalpy nozzle. With numerical solving axisymmetric compressible Navier-Stokes equations coupling with Park’s two-temperature model, the fully non-equilibrium solution is employed throughout the entire nozzle. Calculations are performed at different stagnation conditions with the different absolute scales and expansion ratio. The results of this study contain twofold. Firstly, as the absolute scale and expansion ratio increase, the freezing position is delayed, and the flow approaches equilibrium. Secondly, the vibrational temperature and Mach number decrease with the increase in the nozzle scale and expansion ratio,while the speed of sound, static pressure, and translational temperature increase as the nozzle scale and expansion ratio increase.


2020 ◽  
Author(s):  
Junmou Shen ◽  
Hongbo Lu ◽  
Ruiqu Li ◽  
Xing Chen ◽  
Handong Ma

Abstract The high enthalpy nozzle converts the high enthalpy stagnation gas into the hypervelocity free flow. The flow region of the high enthalpy nozzle consists of three parts: an equilibrium region upstream of the throat, a non-equilibrium region near the throat, and a frozen region downstream of the throat. Here we propose to consider the thermochemical non-equilibrium scale effects in the high enthalpy nozzle. With numerical solving axisymmetric compressible Navier-Stokes equations coupling with Park’s two-temperature model, the fully non-equilibrium solution is employed throughout the entire nozzle. Calculations are performed at different stagnation conditions with the different absolute scales and expansion ratio. The results of this study contain twofold. Firstly, as the absolute scale and expansion ratio increase, the freezing position is delayed, and the flow approaches equilibrium. Secondly, the vibrational temperature and Mach number decrease with the increase in the nozzle scale and expansion ratio,while the speed of sound, static pressure, and translational temperature increase as the nozzle scale and expansion ratio increase.


2020 ◽  
Author(s):  
Junmou Shen ◽  
Hongbo Lu ◽  
Ruiqu Li ◽  
Xing Chen ◽  
Handong Ma

Abstract The high enthalpy nozzle converts the high enthalpy stagnation gas into the hypervelocity free flow. The flow region of the high enthalpy nozzle consists of three parts: an equilibrium region upstream of the throat, a non-equilibrium region near the throat, and a frozen region downstream of the throat. Here we propose to consider the thermochemical non-equilibrium scale effects in the high enthalpy nozzle. With numerical solving axisymmetric compressible Navier-Stokes equations coupling with Park’s two-temperature model, the fully non-equilibrium solution is employed throughout the entire nozzle. Calculations are performed at different stagnation conditions with the different absolute scales and expansion ratio. The significant results of this study contain twofold. Firstly, as the absolute scale and expansion ratio increase, the freezing position is delayed, and the flow approaches equilibrium. Secondly, the vibrational temperature and Mach number decrease with the increase in the nozzle scale and expansion ratio,while the speed of sound, static pressure, and translational temperature increase as the nozzle scale and expansion ratio increase.


Sign in / Sign up

Export Citation Format

Share Document