scholarly journals A geodesical approach for the harmonic oscillator

2020 ◽  
Vol 17 (1 Jan-Jun) ◽  
pp. 6
Author(s):  
Rodrigo Sánchez-Martínez ◽  
Alvaro Lorenzo Salas-Brito ◽  
Hilda Noemí Núñez-Yépez

The harmonic oscillator (HO) is present in all contemporary physics, from elementary classical mechanicsto quantum field theory. It is useful in general to exemplify techniques in theoretical physics. In this work,we use a method for solving classical mechanic problems by first transforming them to a free particle formand using the new canonical coordinates to reparametrize its phase space. This technique has been used tosolve the one-dimensional hydrogen atom and also to solve for the motion of a particle in a dipolar potential.Using canonical transformations we convert the HO Hamiltonian to a free particle form which becomestrivial to solve. Our approach may be helpful to exemplify how canonical transformations may be used inmechanics. Besides, we expect it will help students to grasp what they mean when it is said that a problemhas been transformed into another completely different one. As, for example, when the Kepler problem istransformed into free (geodesic) motion on a spherical surface.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.







2018 ◽  
Vol 33 (26) ◽  
pp. 1850150 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

Based on the one-dimensional quantum mechanics on (anti)-de Sitter background [W. S. Chung and H. Hassanabadi, Mod. Phys. Lett. A 32, 26 (2107)], we discuss the Ramsauer–Townsend effect. We also formulate the WKB method for the quantum mechanics on (anti)-de Sitter background to discuss the energy level of the quantum harmonic oscillator and quantum bouncer.





2011 ◽  
Vol 08 (06) ◽  
pp. 1259-1268 ◽  
Author(s):  
CIPRIAN HEDREA ◽  
ROMEO NEGREA ◽  
IOAN ZAHARIE ◽  
MIRCEA PUTA

The problem of geometric Kostant quantization of this paper is the role played by "½-correction forms" in order to arrive at the result given by the classical Schrödinger quantization, in the one-dimensional harmonic oscillator study.



2002 ◽  
Vol 80 (6) ◽  
pp. 645-660 ◽  
Author(s):  
M Blasone ◽  
P Jizba

We quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. By using the Feynman–Hibbs method, the time-dependent quantum states of such a system are constructed entirely in the framework of the classical theory. The geometric phase is calculated and found to be proportional to the ground-state energy of the one-dimensional linear harmonic oscillator to which the two-dimensional system reduces under appropriate constraint. PACS Nos.: 03.65Ta, 03.65Vf, 03.65Ca, 03.65Fd



2018 ◽  
Vol 2 (1) ◽  
pp. 27
Author(s):  
Lily Maysari Angraini ◽  
I Wayan Sudiarta

<span>The purpose of  this paper is to show some improvements of the finite-difference time domain (FDTD) method using Numerov and non-standard finite difference (NSFD) schemes for solving the one-dimensional Schr</span><span>ö</span><span>dinger equation. Starting with results of the unmodified FDTD method, Numerov-FD and NSFD are applied iteratively to produce more accurate results for eigen energies and wavefunctios. Three potential wells, infinite square well, harmonic oscillator and Poschl-Teller, are used to compare results of FDTD calculations. Significant improvements in the results for the infinite square potential and the harmonic oscillator potential are found using Numerov-NSFD scheme, and for Poschl-Teller potential are found using Numerov scheme.</span>



Sign in / Sign up

Export Citation Format

Share Document