Dates in Neurology: A Chronological Record of Progress in Neurology over the Last Millennium H. S. J. Lee, ed.Dates in Neurology: A Chronological Record of Progress in Neurology over the Last Millennium H. S. J. Lee, ed. New York: Parthenon, 2000, 164 p., US $29.00

2001 ◽  
Vol 18 (2) ◽  
pp. 411-412
Author(s):  
Vladimir Hachinski
Keyword(s):  
New York ◽  
2020 ◽  
Author(s):  
Jennifer Walker ◽  
Robert Kopp ◽  
Nicole Khan ◽  
Timothy Shaw ◽  
Niamh Cahill ◽  
...  

<p>Last millennium relative sea-level (RSL) changes along the U.S. Atlantic coast are spatially variable. Glacial isostatic adjustment (GIA) has been a significant driving factor in RSL rise during the last millennium, producing maximum rates of vertical land motion in the mid-Atlantic region due to its proximity to the margin of the former Laurentide Ice Sheet. However, there is uncertainty surrounding the influence of other regional and local processes on RSL changes such as ocean and atmosphere circulation dynamics; gravitational, rotational, and deformational signals associated with ice mass and distribution changes; sediment compaction; and tidal range change.</p><p>Here, we examined the high spatial density of high-resolution RSL records along a ~200 km stretch of coastline from New York City to southern New Jersey to distinguish between local, regional, and global scale drivers. We produced a new high-resolution (decimeter vertical, decadal temporal) RSL record of the last millennium in northern New Jersey and integrated it into an updated global database of instrumental and proxy sea-level records of the Common Era. We used a spatiotemporal empirical hierarchical model to estimate past RSL and rates of RSL change and their associated uncertainties in the context of broader regional changes by decomposing the records into global, regional linear, regional non-linear, and local components.</p><p>We found that RSL in northern New Jersey continuously rose over the last 1000 years at a rate of 1.2 ± 0.2 mm/yr (2σ) from 1000 to 1700 CE before increasing to 1.3 ± 0.7 mm/yr from 1700-1800 CE to 1.8 ± 0.6 mm/yr from 1800-1900 CE to 3.0 ± 0.6 mm/yr from 1900-2000 CE. Most of the RSL rise during the past 1000 years is attributed to regional-scale linear processes that we interpret primarily as GIA. The linear component of the RSL records exhibits a north to south gradient, with a greater contribution of RSL rise in southern New Jersey and a smaller contribution in New York City. The regional-scale non-linear contribution from the records have a magnitude <10 cm and are nearly identical because they fall within the same regional scale determined by the spatiotemporal model. The rate of the regional non-linear component fluctuated between -0.1 and 0.1 mm/yr until the late 19th century when it increased to a rate of 0.6 ± 0.1 mm/yr in the late 20th century. These trends are likely explained by a combination of physical processes, including the evolving mass of the Greenland Ice Sheet, steric effects, or ocean mass changes from atmospheric circulation and ocean currents. The local-scale contribution is <10 cm at all sites, but varies in magnitudes and rates of change, which may be due to sediment compaction or tidal range change.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248060
Author(s):  
J. Curt Stager ◽  
Brendan Wiltse ◽  
Brian F. Cumming ◽  
Timothy C. Messner ◽  
Joshua Robtoy ◽  
...  

Long-term, large-scale perspectives are necessary for understanding climate variability and its effects on ecosystems and cultures. Tree ring records of the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) have documented major hydroclimatic variability during the last millennium in the American West, but fewer continuous, high-resolution hydroclimate records of the MCA-LIA period are available for eastern North America, particularly during the transition from the MCA to the LIA (ca. A.D. 1250–1400). Diatoms (micro-algae with silica cell walls) in sediment cores from three Adirondack (NY, USA) lakes and a hiatus in a wetland peat deposit in the Adirondack uplands provide novel insights into the late Holocene hydroclimate history of the Northeast. These records demonstrate that two of the region’s most extreme decadal-scale droughts of the last millennium occurred ca. A.D. 1260–1330 and ca. A.D. 1360–1390 during a dry-wet-dry (DWD) oscillation in the Adirondacks that contributed to forest fires and desiccation of wetlands in New York and Maine. The bimodal drying was probably related to more extreme droughts farther west and coincided with major events in Iroquoian and Abenaki cultural history. Although the causes of the DWD oscillation in the Adirondacks remain uncertain, changing sea-surface temperatures and solar variability are likely to have played a role.


Sign in / Sign up

Export Citation Format

Share Document