Driving mechanisms of sea-level variability in the U.S. mid-Atlantic during the last millennium

Author(s):  
Jennifer Walker ◽  
Robert Kopp ◽  
Nicole Khan ◽  
Timothy Shaw ◽  
Niamh Cahill ◽  
...  

<p>Last millennium relative sea-level (RSL) changes along the U.S. Atlantic coast are spatially variable. Glacial isostatic adjustment (GIA) has been a significant driving factor in RSL rise during the last millennium, producing maximum rates of vertical land motion in the mid-Atlantic region due to its proximity to the margin of the former Laurentide Ice Sheet. However, there is uncertainty surrounding the influence of other regional and local processes on RSL changes such as ocean and atmosphere circulation dynamics; gravitational, rotational, and deformational signals associated with ice mass and distribution changes; sediment compaction; and tidal range change.</p><p>Here, we examined the high spatial density of high-resolution RSL records along a ~200 km stretch of coastline from New York City to southern New Jersey to distinguish between local, regional, and global scale drivers. We produced a new high-resolution (decimeter vertical, decadal temporal) RSL record of the last millennium in northern New Jersey and integrated it into an updated global database of instrumental and proxy sea-level records of the Common Era. We used a spatiotemporal empirical hierarchical model to estimate past RSL and rates of RSL change and their associated uncertainties in the context of broader regional changes by decomposing the records into global, regional linear, regional non-linear, and local components.</p><p>We found that RSL in northern New Jersey continuously rose over the last 1000 years at a rate of 1.2 ± 0.2 mm/yr (2σ) from 1000 to 1700 CE before increasing to 1.3 ± 0.7 mm/yr from 1700-1800 CE to 1.8 ± 0.6 mm/yr from 1800-1900 CE to 3.0 ± 0.6 mm/yr from 1900-2000 CE. Most of the RSL rise during the past 1000 years is attributed to regional-scale linear processes that we interpret primarily as GIA. The linear component of the RSL records exhibits a north to south gradient, with a greater contribution of RSL rise in southern New Jersey and a smaller contribution in New York City. The regional-scale non-linear contribution from the records have a magnitude <10 cm and are nearly identical because they fall within the same regional scale determined by the spatiotemporal model. The rate of the regional non-linear component fluctuated between -0.1 and 0.1 mm/yr until the late 19th century when it increased to a rate of 0.6 ± 0.1 mm/yr in the late 20th century. These trends are likely explained by a combination of physical processes, including the evolving mass of the Greenland Ice Sheet, steric effects, or ocean mass changes from atmospheric circulation and ocean currents. The local-scale contribution is <10 cm at all sites, but varies in magnitudes and rates of change, which may be due to sediment compaction or tidal range change.</p>

2013 ◽  
Vol 28 (4) ◽  
pp. 403-411 ◽  
Author(s):  
BENJAMIN P. HORTON ◽  
SIMON E. ENGELHART ◽  
DAVID F. HILL ◽  
ANDREW C. KEMP ◽  
DARIA NIKITINA ◽  
...  

The Holocene ◽  
2017 ◽  
Vol 27 (8) ◽  
pp. 1169-1186 ◽  
Author(s):  
Andrew C Kemp ◽  
Troy D Hill ◽  
Christopher H Vane ◽  
Niamh Cahill ◽  
Philip M Orton ◽  
...  

New York City (NYC) is threatened by 21st-century relative sea-level (RSL) rise because it will experience a trend that exceeds the global mean and has high concentrations of low-lying infrastructure and socioeconomic activity. To provide a long-term context for anticipated trends, we reconstructed RSL change during the past ~1500 years using a core of salt-marsh sediment from Pelham Bay in The Bronx. Foraminifera and bulk-sediment δ13C values were used as sea-level indicators. The history of sediment accumulation was established by radiocarbon dating and recognition of pollution and land-use trends of known age in down-core elemental, isotopic, and pollen profiles. The reconstruction was generated within a Bayesian hierarchical model to accommodate multiple proxies and to provide a unified statistical framework for quantifying uncertainty. We show that RSL in NYC rose by ~1.70 m since ~575 CE (including ~0.38 m since 1850 CE). The rate of RSL rise increased markedly at 1812–1913 CE from ~1.0 to ~2.5 mm/yr, which coincides with other reconstructions along the US Atlantic coast. We investigated the possible influence of tidal-range change in Long Island Sound on our reconstruction using a regional tidal model, and we demonstrate that this effect was likely small. However, future tidal-range change could exacerbate the impacts of RSL rise in communities bordering Long Island Sound. The current rate of RSL rise is the fastest that NYC has experienced for >1500 years, and its ongoing acceleration suggests that projections of 21st-century local RSL rise will be realized.


2017 ◽  
Vol 114 (45) ◽  
pp. 11861-11866 ◽  
Author(s):  
Andra J. Garner ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Robert E. Kopp ◽  
Ning Lin ◽  
...  

The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.


1931 ◽  
Vol 25 (2) ◽  
pp. 238-251
Author(s):  
Blewett Lee

On September 15, 1930, the State Board of Commerce and Navigation of New Jersey made a ruling that aircraft would not be permitted to land on any New Jersey waters above tidewater within the jurisdiction of the state. The application had been made for permission to operate a five passenger flying boat between Nolan's Point, Lake Hopatcong, a vacation resort, and New York City, and to set off a portion of the lake to make a landing place for the hydroairplane. It was stated that other inland waters in New Jersey were being used for a similar purpose, and the ground of the refusal was that aircraft flying from water constituted a menace to surface navigation. This ruling created considerable newspaper comment and aroused vigorous protest from persons interested in aviation, and by order of October 20, 1930, the ruling was limited to Lake Hopatcong.


2018 ◽  
Vol 115 (41) ◽  
pp. 10281-10286 ◽  
Author(s):  
Dorothy M. Peteet ◽  
Jonathan Nichols ◽  
Timothy Kenna ◽  
Clara Chang ◽  
James Browne ◽  
...  

New York City (NYC) is representative of many vulnerable coastal urban populations, infrastructures, and economies threatened by global sea level rise. The steady loss of marshes in NYC’s Jamaica Bay is typical of many urban estuaries worldwide. Essential to the restoration and preservation of these key wetlands is an understanding of their sedimentation. Here we present a reconstruction of the history of mineral and organic sediment fluxes in Jamaica Bay marshes over three centuries, using a combination of density measurements and a detailed accretion model. Accretion rate is calculated using historical land use and pollution markers, through a wide variety of sediment core analyses including geochemical, isotopic, and paleobotanical analyses. We find that, since 1800 CE, urban development dramatically reduced the input of marsh-stabilizing mineral sediment. However, as mineral flux decreased, organic matter flux increased. While this organic accumulation increase allowed vertical accumulation to outpace sea level, reduced mineral content causes structural weakness and edge failure. Marsh integrity now requires mineral sediment addition to both marshes and subsurface channels and borrow pits, a solution applicable to drowning estuaries worldwide. Integration of marsh mineral/organic accretion history with modeling provides parameters for marsh preservation at specific locales with sea level rise.


2001 ◽  
Vol 32 (1) ◽  
pp. 61-88 ◽  
Author(s):  
Vivien Gornitz ◽  
Stephen Couch ◽  
Ellen K Hartig

2010 ◽  
Vol 49 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Brian A. Colle ◽  
Katherine Rojowsky ◽  
Frank Buonaito

Abstract A climatological description (“climatology”) of storm surges and actual flooding (storm tide) events from 1959 to 2007 is presented for the New York City (NYC) harbor. The prevailing meteorological conditions associated with these surges are also highlighted. Two surge thresholds of 0.6–1.0 m and >1.0 m were used at the Battery, New York (south side of Manhattan in NYC), to identify minor and moderate events, respectively. The minor-surge threshold combined with a tide at or above mean high water (MHW) favors a coastal flood advisory for NYC, and the moderate surge above MHW leads to a coastal flood warning. The number of minor surges has decreased gradually during the last several decades at NYC while the number of minor (storm tide) flooding events has increased slightly given the gradual rise in sea level. There were no moderate flooding events at the Battery from 1997 to 2007, which is the quietest period during the last 50 yr. However, if sea level rises 12–50 cm during the next century, the number of moderate flooding events is likely to increase exponentially. Using cyclone tracking and compositing of the NCEP global reanalysis (before 1979) and regional reanalysis (after 1978) data, the mean synoptic evolution was obtained for the NYC surge events. There are a variety of storm tracks associated with minor surges, whereas moderate surges favor a cyclone tracking northward along the East Coast. The average surface winds at NYC veer from northwesterly at 48 h before the time of maximum surge to a persistent period of east-northeasterlies beginning about 24 h before the surge. There is a relatively large variance in wind directions and speeds around the time of maximum surge, thus suggesting the importance of other factors (fetch, storm duration and track, etc.).


Sign in / Sign up

Export Citation Format

Share Document