hydroclimatic variability
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 64)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
Vol 17 (6) ◽  
pp. 2653-2677
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Achim Brauer ◽  
...  

Abstract. Annual and decadal-scale hydroclimatic variability describes key characteristics that are embedded into climate in situ and is of prime importance in subtropical regions. The study of hydroclimatic variability is therefore crucial to understand its manifestation and implications for climate derivatives such as hydrological phenomena and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relying on modern dynamics could misrepresent some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ∼ 700 years each, from the depocenter of the Dead Sea, which has been continuously recording environmental conditions since the Pleistocene. We focus on two series of annually deposited laminated intervals (i.e., varves) that represent two episodes of opposing mean climates, deposited during MIS2 lake-level rise and fall at ∼ 27 and 18 ka, respectively. These two series comprise alternations of authigenic aragonite that precipitated during summer and flood-borne detrital laminae deposited by winter floods. Within this record, aragonite laminae form a proxy of annual inflow and the extent of epilimnion dilution, whereas detrital laminae are comprised of sub-laminae deposited by individual flooding events. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during “wetter”, with respect to the relatively “dryer”, conditions, reflected by opposite lake-level changes. In addition, decades of intense flood frequency (clusters) are identified, reflecting the in situ impact of shifting centennial-scale climate regimes, which are particularly pronounced during wetter conditions. The combined application of multiple time series analyses suggests that the studied episodes are characterized by weak and non-significant cyclical components of sub-decadal frequencies. The interpretation of these observations using modern synoptic-scale hydroclimatology suggests that Pleistocene climate changes resulted in shifts in the dominance of the key synoptic systems that govern rainfall, annual inflow and flood frequency in the eastern Mediterranean Sea over centennial timescales.


2021 ◽  
Vol 9 ◽  
Author(s):  
Philip Riris ◽  
Jonas Gregorio de Souza

The study of resilience is a common pathway for scientific data to inform policy and practice towards impending climate change. Consequently, understanding the mechanisms and features that contribute towards building resilience is a key goal of much research on coupled socio-environmental systems. In parallel, archaeology has developed the ambition to contribute to this agenda through its unique focus on cultural dynamics that occur over the very long term. This paper argues that archaeological studies of resilience are limited in scope and potential impact by incomplete operational definitions of resilience, itself a multifaceted and contested concept. This lack of interdisciplinary engagement fundamentally limits archaeology’s ability to contribute meaningfully to understanding factors behind the emergence and maintenance of long-term societal resilience, a topic of significant interest that the field is in theory ideally positioned to address. Here, we introduce resilience metrics drawn from ecology and develop case studies to illustrate their potential utility for archaeological studies. We achieve this by extending methods for formally measuring resistance, the capacity of a system to absorb disturbances; and resilience, its capacity to recover from disturbances, with a novel significance test for palaeodemographic data. Building on statistical permutation and post-hoc tests available in the rcarbon package in the R statistical environment, we apply our adapted resilience-resistance framework to summed probability distributions of calibrated radiocarbon dates drawn from the Atlantic Forest of eastern Brazil. We deploy these methods to investigate cross-sectional trends across three recognised biogeographical zones of the Atlantic Forest domain, against the backdrop of prehistoric phases of heightened hydroclimatic variability. Our analysis uncovers novel centennial-scale spatial structure in the resilience of palaeodemographic growth rates. In addition to the case-specific findings, we suggest that adapting formal metrics can help archaeology create impact and engagement beyond relatively narrow disciplinary concerns. To this end, we supply code and data to replicate our palaeodemographic analyses to enable their use and adaptation to other archaeological problems.


Author(s):  
Sylvain Bigot ◽  
Dominique Dumas ◽  
Télesphore Y. Brou ◽  
Rivo Ramboarison ◽  
Samuel Razanaka ◽  
...  

Abstract. Given the lack of in situ hydroclimatic measurements and networks in Madagascar, the GRACE (2003–2016) spatial gravimetry data, combined with other satellite data such as CHIRPS rainfall estimates or fire monitoring using GFED products, make it possible to establish an interannual assessment of certain climatic and environmental covariations at the northwest scale of the country. The results show a negative trend in continental rainfall and water content, especially after 2007, but also a time lag in the linear variations and trends of the Water Equivalent Height as well as the number of detected fires (variable indirectly measuring the pressure of deforestation by slash and burn agriculture).


Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 98
Author(s):  
Yoseph Arba Orke ◽  
Ming-Hsu Li

It is important to understand variations in hydro-meteorological variables to provide crucial information for water resource management and agricultural operation. This study aims to provide comprehensive investigations of hydroclimatic variability in the Bilate watershed for the period 1986 to 2015. Coefficient of variation (CV) and the standardized anomaly index (SAI) were used to assess the variability of rainfall, temperature, and streamflow. Changing point detection, the Mann–Kendell test, and the Sen’s slope estimator were employed to detect shifting points and trends, respectively. Rainfall and streamflow exhibited higher variability in the Bega (dry) and Belg (minor rainy) seasons than in the Kiremt (main rainy) season. Temperature showed an upward shift of 0.91 °C in the early 1990s. Reduction in rainfall (−11%) and streamflow (−42%) were found after changing points around late 1990s and 2000s, respectively. The changing points detected were likely related to the ENSO episodes. The trend test indicated a significant rise in temperature with a faster increase in the minimum temperature (0.06 °C/year) than the maximum temperature (0.02 °C/year). Both annual mean rainfall and streamflow showed significant decreasing trends of 8.32 mm/year and 3.64 mm/year, respectively. With significant increase in temperature and reduction in rainfall, the watershed has been experiencing a decline in streamflow and a shortage of available water. Adaptation measures should be developed by taking the increasing temperature and the declining and erratic nature of rainfall into consideration for water management and agricultural activities.


2021 ◽  
Author(s):  
Alison J. O’Donnell ◽  
W. Lachlan McCaw ◽  
Edward R. Cook ◽  
Pauline F. Grierson

AbstractDeclining winter rainfall coupled with recent prolonged drought poses significant risks to water resources and agriculture across southern Australia. While rainfall declines over recent decades are largely consistent with modelled climate change scenarios, particularly for southwest Australia, the significance of these declines is yet to be assessed within the context of long-term hydroclimatic variability. Here, we present a new 668-year (1350–2017 CE) tree-ring reconstruction of autumn–winter rainfall over inland southwest Australia. This record reveals that a recent decline in rainfall over inland southwest Australia (since 2000 CE) is not unusual in terms of either magnitude or duration relative to rainfall variability over the last seven centuries. Drought periods of greater magnitude and duration than those in the instrumental record occurred prior to 1900 CE, including two ‘megadroughts’ of > 30 years duration in the eighteenth and nineteenth centuries. By contrast, the wettest > decadal periods of the last seven centuries occurred after 1900 CE, making the twentieth century the wettest of the last seven centuries. We conclude that the instrumental rainfall record (since ~ 1900 CE) does not capture the full scale of natural hydroclimatic variability for inland southwest Australia and that the risk of prolonged droughts in the region is likely much higher than currently estimated.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 963
Author(s):  
Matteo Balistrocchi ◽  
Massimo Tomirotti ◽  
Alessandro Muraca ◽  
Roberto Ranzi

Extreme streamflow nonstationarity has probably attracted more attention than mean streamflow nonstationarity in the assessment of the impacts of climate change on the water cycle. Nonetheless, a significant decrease in mean streamflow could lead to conditions of scarcity of freshwater in the long-term period, seriously compromising the sustainability of the demand for civil, agricultural, and industrial uses. Regional analyses are useful to better characterize an area’s nonstationarity, since a clear trend at a global scale has not been detected yet. In this article, long-term and high-quality series of streamflow discharges observed in five rivers in the Central Italian Alps, including two multicentury series and two new precipitation and streamflow series not analyzed before, are investigated to statistically characterize individual trends of mean annual runoff volumes. Nonparametric pooled statistics are also introduced to assess the regional trend. Additional climatic and nonclimatic factors, namely, precipitation trends and land cover transformations, have also been considered as potential change drivers. Unlike precipitation, runoff volumes show a marked and statistically significant decrease of −1.45 mm/year, which appears to be homogeneous in the region. The land cover transformation analysis presented here revealed extensive woodland expansions of 510 km2 in 2018 out of the 2650 km2 area measured in 1954, representing 38% of the area investigated in this study: this anthropic driver of enhanced hydrologic losses can be recognized as an additional likely cause for the regional runoff volume decrease.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248060
Author(s):  
J. Curt Stager ◽  
Brendan Wiltse ◽  
Brian F. Cumming ◽  
Timothy C. Messner ◽  
Joshua Robtoy ◽  
...  

Long-term, large-scale perspectives are necessary for understanding climate variability and its effects on ecosystems and cultures. Tree ring records of the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) have documented major hydroclimatic variability during the last millennium in the American West, but fewer continuous, high-resolution hydroclimate records of the MCA-LIA period are available for eastern North America, particularly during the transition from the MCA to the LIA (ca. A.D. 1250–1400). Diatoms (micro-algae with silica cell walls) in sediment cores from three Adirondack (NY, USA) lakes and a hiatus in a wetland peat deposit in the Adirondack uplands provide novel insights into the late Holocene hydroclimate history of the Northeast. These records demonstrate that two of the region’s most extreme decadal-scale droughts of the last millennium occurred ca. A.D. 1260–1330 and ca. A.D. 1360–1390 during a dry-wet-dry (DWD) oscillation in the Adirondacks that contributed to forest fires and desiccation of wetlands in New York and Maine. The bimodal drying was probably related to more extreme droughts farther west and coincided with major events in Iroquoian and Abenaki cultural history. Although the causes of the DWD oscillation in the Adirondacks remain uncertain, changing sea-surface temperatures and solar variability are likely to have played a role.


2021 ◽  
Vol 3 ◽  
Author(s):  
Omar Gutierrez-Cori ◽  
Jhan Carlo Espinoza ◽  
Laurent Z. X. Li ◽  
Sly Wongchuig ◽  
Paola A. Arias ◽  
...  

The southern Amazonia is undergoing a major biophysical transition, involving changes in land use and regional climate. This study provides new insights on the relationship between hydroclimatic variables and vegetation conditions in the upper Madeira Basin (~1 × 106 km2). Vegetative dynamics are characterised using the normalized difference vegetation index (NDVI) while hydroclimatic variability is analysed using satellite-based precipitation, observed river discharge, satellite measurements of terrestrial water storage (TWS) and downward shortwave radiation (DSR). We show that the vegetation in this region varies from energy-limited to water-limited throughout the year. During the peak of the wet season (January-February), rainfall, discharge and TWS are negatively correlated with NDVI in February-April (r = −0.48 to −0.65; p < 0.05). In addition, DSR is positively correlated with NDVI (r = 0.47–0.54; p < 0.05), suggesting that the vegetation is mainly energy-limited during this period. Outside this period, these correlations are positive for rainfall, discharge and TWS (r = 0.55–0.88; p < 0.05), and negative for DSR (r = −0.47 to −0.54; p < 0.05), suggesting that vegetation depends mainly on water availability, particularly during the vegetation dry season (VDS; late June to late October). Accordantly, the total rainfall during the dry season explains around 80% of the VDS NDVI interannual variance. Considering the predominant land cover types, differences in the hydroclimate-NDVI relationship are observed. Evergreen forests (531,350 km2) remain energy-limited during the beginning of the dry season, but they become water-limited at the end of the VDS. In savannas and flooded savannas (162,850 km2), water dependence occurs months before the onset of the VDS. These differences are more evident during extreme drought years (2007, 2010, and 2011), where regional impacts on NDVI were stronger in savannas and flooded savannas (55% of the entire surface of savannas) than in evergreen forests (40%). A spatial analysis reveals that two specific areas do not show significant hydroclimatic-NDVI correlations during the dry season: (i) the eastern flank of the Andes, characterised by very wet conditions, therefore the vegetation is not water-limited, and (ii) recent deforested areas (~42,500 km2) that break the natural response in the hydroclimate-vegetation system. These findings are particularly relevant given the increasing rates of deforestation in this region.


Sign in / Sign up

Export Citation Format

Share Document