KANTHAL 70

Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract KANTHAL 70 alloy was designed to provide a high positive temperature coefficient to electrical resistance comparable with that of pure nickel; however, it has much higher electrical resistivity than pure nickel. This makes it useful as a voltage regulator when placed in series with another electrical device across a fluctuating voltage source. Kanthal 70 has a maximum recommended operating temperature of 600 C and is used widely in resistance thermometers and in various appliance and automotive applications. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-270. Producer or source: The Kanthal Corporation.

Alloy Digest ◽  
1968 ◽  
Vol 17 (6) ◽  

Abstract MAR-M alloy 246 is a vacuum-cast nickel-base alloy combining precipitation hardening and solid solution strengthening. It has high rupture strength and adequate ductility in the recommended operating temperature range of 1200-1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: Ni-134. Producer or source: Martin Metals Division.


Alloy Digest ◽  
1978 ◽  
Vol 27 (2) ◽  

Abstract DRIVER 180 ALLOY is a copper-nickel alloy for use where moderate electrical resistance is required. The number designation refers to its specific resistivity (180 ohms/cir mil/ft) which is combined with a fairly low coefficient of resistance (180 x 10^-6 per C). Its maximum recommended operating temperature is 1000 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-348. Producer or source: Wilbur B. Driver Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (11) ◽  

Abstract DRIVER 90 ALLOY is a copper-nickel alloy for use where only moderately low electrical resistance is required. The number designations refers to its specific resistivity (90 ohms/cir mil/ft) which is combined with a moderate coefficient of resistance. Its maximum recommended operating temperature is 800 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming and heat treating. Filing Code: Cu-343. Producer or source: Wilbur B. Driver Company.


Alloy Digest ◽  
1996 ◽  
Vol 45 (5) ◽  

Abstract Remanit 4541 is a titanium-stabilized 18-10 austenitic stainless steel with a maximum operating temperature of approximately 1650 deg F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming, heat treating, and joining. Filing Code: SS-645. Producer or source: Thyssen Stahl AG.


Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract FERRO-TIC MS-5 is comprised of ultrahard titanium carbide grains cemented by an age-hardenable martensitic stainless steel matrix. Its unique combination of wear, heat and corrosion resistance and toughness make it well suited for abrasion-resistant components in the aerospace, chemical and food industries. Its maximum operating temperature is 850 F. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: TS-269. Producer or source: Chromalloy Metal Tectonics Company.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


Sign in / Sign up

Export Citation Format

Share Document