positive temperature coefficient
Recently Published Documents


TOTAL DOCUMENTS

558
(FIVE YEARS 69)

H-INDEX

41
(FIVE YEARS 4)

Author(s):  
Anu Roshini ◽  
Chandrasekhar Malavika ◽  
Manoj Kumar ◽  
Ethirajalu Senthamarai Kannan

Abstract The coexistence of negative photoconductivity and metallic-like behavior in conventional semiconductors is very uncommon. In this work, we report the existence of such unconventional physical properties in Molybdenum disulfide nanoflowers (MoS2-NF). This is achieved by making the surface of MoS2 hygroscopic by alcohol treatment and creating a transport channel that favors protonic over electronic conduction. On cooling the MoS2-NF in a heat sink, the excess water that condenses on the surface forms a proton (H3O+) wire which exhibits pinched hysteresis characteristics. The conductivity of MoS2 increased by two orders of magnitude in the proton-dominated conduction regime with an exceptionally high positive temperature coefficient of 1.3×104 Ω/K. Interestingly, MoS2-NF also exhibits strong negative photoresponse (NPC) at room temperature when illuminated with UV and infra-red radiation. This interesting behavior observed in MoS2 NF can be useful for energy harvesting applications and the realization of fast thermal memories and optical switches.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feng Xue ◽  
Kangcai Li ◽  
Lei Cai ◽  
Enyong Ding

High-density polyethylene (HDPE)/carbon black (CB) is widely used in positive temperature coefficient (PTC) composites. In order to expand its applications to fields that need good flexibility, polyolefin elastomer (POE) was incorporated into HDPE/CB composites as a secondary thermoplastic elastomer phase to provide flexibility. The effects of POE and CB content on the PTC performance and flexibility were investigated. Micro morphology and crystallization behavior are closely related to PTC properties. SEM was conducted to reveal phase morphology and filler dispersion, and DSC was conducted to research crystallization behavior. The results show that the incorporation of 18 wt.% POE can decrease the percolation threshold of conductive carbon black from 22.5 wt.% to 16 wt.%. When the CB content is 30 wt.%, the room temperature resistivity gradually increases with the increasing content of POE because of the barrier effect of POE phase, and the PTC intensity is gradually enhanced. Meanwhile, the PTC switching temperature shifts down to a lower temperature. The incorporation of 18 wt.% POE significantly increases the elongation at break, reaching an ultrahigh value of 980 wt.%, which means great flexibility has been achieved in HDPE/POE/CB composites. This work provides a new method of fabricating PTC composites with balanced electrical and mechanical properties.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012194
Author(s):  
E V Kontrosh ◽  
G V Klimko ◽  
V S Kalinovskii ◽  
V S Yuferev ◽  
N V Vaulin ◽  
...  

Abstract Investigations of the temperature stability of the peak tunneling current density of connecting tunneling diodes, which are necessary for the creation on their basis of multijunction photoconverters of powerful optical radiation, have been carried out. The structures of n++-GaAs/i-GaAs/i-AlGaAs/p++-AlGaAs of connecting TD with an intermediate undoped layer thickness of 7.5 nm and a growth temperature of 500 °C (structure ”A”) and with a thickness of 10 nm and a temperature of 450 °C (structure ”B”) were investigated. When heated to 80 °C, an increase in the peak tunneling current density of the TD structure ”B” by 4% is observed. However, for structure ”A”, a decrease in the peak tunneling current density by 5% with heating is observed. The factors leading to the appearance of a negative or positive temperature coefficient of the peak tunneling current density are determined using mathematical modeling of tunneling diodes based on GaAs/AlGaAs materials. By reducing the epitaxial growth temperature of n++–GaAs/i-GaAs/i-AlGaAs/p++–AlGaAs tunnel diode structure to 450 °C and including an undoped i-layer 10 nm thick between the degenerate layers ensure the temperature stability of peak current density when heated to 80 °C.


2021 ◽  
Vol 7 (3) ◽  
pp. 91-97
Author(s):  
Julia A. Fedotova

Granular films containing Fe50Co50Zr10 alloy nanoparticles inside Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3 (PZT) ferroelectric matrix possess a combination of functional magnetic and electrical properties which can be efficiently controlled by means of external electric or magnetic fields. The formation of the required granular structure in PZT matrix is only possible if synthesis is carried out in an oxygen-containing atmosphere leading to substantial oxidation of metallic nanoparticles. Thus an important task is to study the oxidation degree of metallic nanoparticles depending on synthesis conditions and the effect of forming phases on the electrical properties of the films. The relationship between the structural and phase state and electrical properties of granular FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%) synthesized in an oxygen-containing atmosphere at the oxygen pressure PO in a range of (2.4–5.0) · 10–3 Pa has been studied using X-ray diffraction, EXAFS and four-probe electrical resistivity measurement. Integrated comparative analysis of the structural and phase composition and local atomic order in (FeCoZr)x (PZT)100-x films has for the first time shown the fundamental role of oxygen pressure PO during synthesis on nanoparticle oxidation and phase composition. We show that the oxygen pressure being within PO = 3.2 · 10–3 Pa an increase in x leads to a transition from nanoparticles of Fe(Co,Zr)O complex oxides to a superposition of complex oxides and a-FeCo(Zr,O) ferromagnetic nanoparticles (or their agglomerations). At higher oxygen pressures РО = 5.0 · 10–3 Pa the nanoparticles undergo complete oxidation with the formation of the (FexCo1-x)1-δO complex oxide having a Wurtzite structure. The forming structural and phase composition allows one to explain the observed temperature dependences of the electrical resistivity of granular films. These dependences are distinguished by a negative temperature coefficient of electrical resistivity over the whole range of film compositions at a high oxygen pressure (РО = 5.0 · 10–3 Pa) and a transition to a positive temperature coefficient of electrical resistivity at a lower oxygen pressure (РО = 3.2 · 10–3 Pa) in the synthesis atmosphere and x > 69 at.% in the films. The transition from a negative to a positive temperature coefficient of electrical resistivity which suggests the presence of a metallic contribution to the conductivity is in full agreement with the X-ray diffraction and EXAFS data indicating the persistence of unoxidized a-FeCo(Zr,O) ferromagnetic nanoparticles or their agglomerations.


Author(s):  
Akinde Olusola Kunle ◽  
Maduako Kingsley Obinna ◽  
Akande, Kunle Akinyinka ◽  
Adeaga Oyetunde Adeoye

Auto Thermal Control device is an electronic based device which employs the application of temperature sensors to controlling household appliances without human interference directly. In this work, thermal source is used to regulate electrical fan and room heater depending on ambient temperature. The room heater, which is adjusted to a set temperature, switches ‘ON’ when the temperature of a room is low (cold). While the same is switches ‘OFF’ with increase in the room temperature. This triggers ‘ON’ an electric fan at different speeds, and thus cools the room. A temperature sensor, tthermistor, monitors change in room temperature. Two types of thermistor exists: Positive Temperature Coefficient, PTC. An increasee in the resistance of PTC results in increasee in temperature). In the Negative Temperature Coefficient, NTC; a decreasee in resistance yields to temperature increase. This article explored a NTC thermistor. The design could be a ready product in the market of the developing nation where environmental automation is yet fully deployed.


2021 ◽  
Vol 899 ◽  
pp. 720-725
Author(s):  
Muslim A. Mikitaev ◽  
V.A. Borisov ◽  
Ismel V. Musov ◽  
Azamat L. Slonov ◽  
Diana M. Khakulova

We have obtained polymer composites based on low-pressure polyethylene and carbon-containing fillers: carbon black, carbon nanotubes. The electrical properties of the obtained polymer composites have been investigated. Obtained polymer composites have electrically conductive properties. This article shows that the electrical properties significantly depend on the concentration, type of carbon-containing filler, as well as on temperature and voltage. It was found that containment of a certain amount of carbon-containing fillers leads to a formation of conductive paths composites, leading to the manifestation of a positive temperature coefficient in electrical resistance by the material.


Sign in / Sign up

Export Citation Format

Share Document