solution strengthening
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 95)

H-INDEX

32
(FIVE YEARS 8)

2022 ◽  
Vol 210 ◽  
pp. 114470
Author(s):  
Pramote Thirathipviwat ◽  
Shigeo Sato ◽  
Gian Song ◽  
Jozef Bednarcik ◽  
Kornelius Nielsch ◽  
...  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Tingting Liu ◽  
Yanglu Liu ◽  
Lu Xiao ◽  
Shibo Zhou ◽  
Bo Song

Mg–Al binary alloys in the concentration range from 0 to 4.0 wt.% Al have been prepared under conventional casting conditions. The as-cast Mg and Mg–Al alloys after solution treatment were processed via hot extrusion at 350 °C. The results show that Al has a positive influence on grain refinement and solution strengthening. The as-extruded Mg–Al alloys are fully recrystallized, and the tensile yield strength of the binary alloys is two times higher than that of pure Mg. Furthermore, the elongations of Mg–Al alloys are much higher than that of pure Mg. In addition, Mg and Mg–Al alloys were further studied by the viscoplastic self-consistent (VPSC) model to explore the activation and evolution of deformation modes. The simulation results match well with the experimental results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Hao ◽  
Sergei Manzhos ◽  
Zhijun Zhang

Natural diamond tools experience wear during cutting of steel. As reported in our previous work, Ga doping of diamond has an effect on suppressing graphitization of diamond which is a major route of wear. We investigate interstitial and substitutional dopants of different valence and different ionic radii (Ga, B, and He) to achieve a deeper understanding of inhibiting graphitization. In this study, ab initio calculations are used to explore the effects of three dopants that might affect the diamond wear. We consider mechanical effects via possible solution strengthening and electronic effects via dopant-induced modifications of the electronic structure. We find that the bulk modulus difference between pristine and doped diamond is clearly related to strain energies. Furthermore, boron doping makes the resulting graphite with stable sp2 hybridization more perfect than diamond, but Ga-doped diamond needs 2.49 eV to form the two graphene-like layers than only one layer, which would result in the suppressed graphitization and reduced chemical wear of the diamond tool.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2021
Author(s):  
Cheng Zhang ◽  
Cheng Peng ◽  
Jin Huang ◽  
Yanchun Zhao ◽  
Tingzhuang Han ◽  
...  

Building a gradient structure inside the Mg alloy structure can be expected to greatly improve its comprehensive mechanical properties. In this study, AZ31/Mg–Sc laminated composites with gradient grain structure were prepared by hot extrusion. The microstructure and mechanical properties of the Mg–1Sc alloy with different extrusion temperatures and surface AZ31 fine-grain layers were investigated. The alloy has a more obvious gradient microstructure when extruded at 350 °C. The nanoscale hardness value of Mg–1Sc alloy was improved through fine-grain strengthening and solution strengthening of the surface AZ31 fine-grain layer. The strength of Mg–1Sc alloy was improved due to the fine-grain strengthening and dislocation strengthening of the surface AZ31 fine-grain layer, and the elongation of Mg–1Sc alloy was increased by improving the distribution of the microstructure.


2021 ◽  
Author(s):  
Jiquan Huang ◽  
Changliang YANG ◽  
Qiufeng HUANG ◽  
Zhonghua DENG ◽  
Yun WANG ◽  
...  

Abstract Sesquioxides such as Y2O3 and Sc2O3 are important optical materials, but the fabrication of their transparent ceramics remains a challenge due to the ultra-high melting point of over 2400 oC. In this work, a series of (Y1-xScx)2O3 transparent ceramics were successfully fabricated by a simple vacuum sintering process without any sintering additives, and the effect of Scandium (Sc) content on the crystal structure and optical/thermal/mechanical properties were evaluated. Y2O3 and Sc2O3 form a complete solid solution with a cubic bixbyite structure. The formation of (Y1-xScx)2O3 solid solution promotes the densification of ceramics, leading to the realization of high transparency close to the theoretical transmittance over a wide wavelength range of 0.35-8 mm. In particular, the in-line transmittance in the range of 0.6-6 mm remains above 80% for (Y1-xScx)2O3 with x = 0.23-0.31, while the pristine Y2O3 and Sc2O3 are opaque. Moreover, the mechanical properties including Vickers hardness (Hv), fracture toughness (KIC), and biaxial strength (δb) are evidently enhanced due to the solid solution strengthening, while the thermal conductivity is reduced due to the reduction of photon free path. This study demonstrates that forming of solid solution is a facile and universal approach for preparing sesquioxides transparent ceramics with high optical and mechanical quality.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1909
Author(s):  
Lukas Haußmann ◽  
Hamad ur ur Rehman ◽  
Dorothea Matschkal ◽  
Mathias Göken ◽  
Steffen Neumeier

Solid solution strengthening of the unordered γ matrix phase by alloying elements is of great importance during creep of Ni-based superalloys, particularly at high temperatures above 1000 °C. To study the role of different potent solutes, we have conducted creep experiments on binary Ni-2X alloys (X = Mo, Re, Ta, W) at 1000 °C, 1050 °C, and 1100 °C at a constant stress of 20 MPa. Compared to mechanical tests below 800 °C, where the size of the elements mostly determines the solid solution hardening contribution, the strengthening contribution of the different alloying elements above 1000 °C directly correlates with their diffusivity. Therefore, elements such as Ta that lead to strong solid solution hardening at low temperatures become less effective at higher temperatures and are exceeded by slower diffusing elements, such as Re.


Author(s):  
James M. Borgman ◽  
Jing Wang ◽  
Lorenzo Zani ◽  
Paul P. Conway ◽  
Carmen Torres-Sanchez

AbstractIn this study, Ti-(0-30 wt.%)Nb alloys developed from elemental powders were fabricated by the Selective Laser Melting (SLM) process. Compositional homogeneity, microstructure and mechanical performance were investigated as a function of energy density. The proportion of un-melted Nb particles and isolated pore count reduced with increasing energy density, while Ti allotropic content (i.e. α’, α” and β) varied with energy density due to in-situ alloying. Increasing the Nb content led to the stabilisation of the α” and β phases. The mechanical properties were similar to those compositions manufactured using casting methods, without further post processing. The addition of 20Nb (wt.%) and using an energy density of 230 J/mm3 resulted in a Young’s Modulus of 65.2 ± 1.8 GPa, a yield strength of 769 ± 36 MPa and a microstructure of predominantly α” martensite. This strength to stiffness ratio (33% higher than Ti-10Nb and 22% higher than Ti-30Nb), is attributed to in-situ alloying that promotes solid solution strengthening and homogenisation. These alloys are strong contenders as materials suitable for implantable load-bearing orthopaedic applications.


Sign in / Sign up

Export Citation Format

Share Document