Secondary Operations for Powder Metallurgy Stainless Steels

2015 ◽  
pp. 440-446
1997 ◽  
Vol 39 (3) ◽  
pp. 453-463 ◽  
Author(s):  
E. Otero ◽  
A. Pardo ◽  
M.V. Utrilla ◽  
F.J. Pérez ◽  
C. Merino

2010 ◽  
Vol 660-661 ◽  
pp. 617-622 ◽  
Author(s):  
Rogério Albuquerque Marques ◽  
Adonis M. Saliba-Silva ◽  
Sizue Ota Rogero ◽  
Maria de Fátima Montemor ◽  
Isolda Costa

- Ferromagnetic stainless steels (SS) produced by powder metallurgy (PM) techniques have been investigated as potential candidates for dental prosthesis applications in replacement of magnetic attachments made of noble and expensive alloys. Two SS were investigated: SS 17-4 PH produced by powder injection (PIM) and SS PM2000 obtained by mechanical alloying. In vitro cytotoxicity analysis of the two SS showed no cytotoxic effects. The magnetic retention force of both tested SS was also evaluated and they were comparable to noble commercially available material that is in use at the moment. The corrosion resistance of both SS was evaluated by electrochemical techniques in sodium phosphate buffer solution (PBS) at 37°C. The AISI 316L SS was also tested under the same conditions for comparison reasons. SS samples tested showed passive behaviour in the electrolyte, but they also presented susceptibility to pitting. The best pitting resistance was associated to the PM2000 whereas the 17-4PH PIM showed the highest pitting susceptibility among the tested steels. The results pointed out that the PM2000 SS might be considered a potential candidate for substitution of high cost magnetic alloys used in dental prosthesis.


1999 ◽  
Vol 14 (6) ◽  
pp. 2283-2295 ◽  
Author(s):  
M. R. McGurk ◽  
T. F. Page

The continuously recording indentation responses of a number of coated systems, mainly thin (<10 μm) hard nitride coatings on stainless steels and a powder metallurgy tool steel, have been explored using nanoindentation with indenter displacements increasing progressively to values greater than the coating thickness. The resultant load-displacement data have been analyzed not only to produce conventional load-displacement (P-δ) plots but also to examine the relationship between P and δ2. Recent models have proposed that there should be a linear P-δ2 relationship for homogeneous systems and that such plots have the potential to reveal the load/displacement regimes in which either the coating or the substrate, or both, are dominant in controlling the overall behavior of the coated system. By utilizing point-to-point differentiation of the P-δ2 relationship, this paper extends this approach to confirm not only that these different regimes of behavior may be readily experimentally identified in this way, but also that further details, such as the propagation of cracks, may be recognized. Our analysis also provides a valuable experimental link to models describing the near-surface deformation behavior of coated systems.


Sign in / Sign up

Export Citation Format

Share Document