electrochemical techniques
Recently Published Documents


TOTAL DOCUMENTS

1438
(FIVE YEARS 395)

H-INDEX

55
(FIVE YEARS 12)

2022 ◽  
Vol 9 ◽  
Author(s):  
Jinhua Shao ◽  
Chao Wang ◽  
Yiling Shen ◽  
Jinlei Shi ◽  
Dongqing Ding

Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.


2022 ◽  
Author(s):  
Ran An ◽  
Adrienne Minerick

The ability to generate stable, spatiotemporally controllable concentration gradients is critical for both electrokinetic and biological applications such as directional wetting and chemotaxis. Electrochemical techniques for generating solution and surface gradients display benefits such as simplicity, controllability, and compatibility with automation. Here, we present an exploratory study for generating micro-scale spatiotemporally controllable gradients using a reaction-free electrokinetic technique in a microfluidic environment. Methanol solutions with ionic Fluorescein isothiocyanate (FITC) molecules were used as an illustrative electrolyte. Spatially non-uniform alternating current (AC) electric fields were applied using hafnium dioxide (HfO2) coated Ti/Au electrode pairs. Results from spatial and temporal analysis, along with control experiments suggest that the FITC ion concentration gradient in bulk fluid (over 50 µm from the electrode) was established due to spatial variation of electric field density, and was independent of electrochemical reactions at the electrode surface. The established ion concentration gradients depended on both amplitudes and the frequencies of the oscillating AC electric field. Overall, this work reports a novel approach for generating stable and spatiotemporally tunable gradients in a microfluidic chamber using a reaction-free electrochemical methodology.


2022 ◽  
Author(s):  
Ran An ◽  
Adrienne Minerick

The ability to generate stable, spatiotemporally controllable concentration gradients is critical for both electrokinetic and biological applications such as directional wetting and chemotaxis. Electrochemical techniques for generating solution and surface gradients display benefits such as simplicity, controllability, and compatibility with automation. Here, we present an exploratory study for generating micro-scale spatiotemporally controllable gradients using a reaction-free electrokinetic technique in a microfluidic environment. Methanol solutions with ionic Fluorescein isothiocyanate (FITC) molecules were used as an illustrative electrolyte. Spatially non-uniform alternating current (AC) electric fields were applied using hafnium dioxide (HfO2) coated Ti/Au electrode pairs. Results from spatial and temporal analysis, along with control experiments suggest that the FITC ion concentration gradient in bulk fluid (over 50 µm from the electrode) was established due to spatial variation of electric field density, and was independent of electrochemical reactions at the electrode surface. The established ion concentration gradients depended on both amplitudes and the frequencies of the oscillating AC electric field. Overall, this work reports a novel approach for generating stable and spatiotemporally tunable gradients in a microfluidic chamber using a reaction-free electrochemical methodology.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Yuntao Xi ◽  
Mao Jia ◽  
Jun Zhang ◽  
Wanli Zhang ◽  
Daoyong Yang ◽  
...  

In this manuscript, the influence of gallium content additions of Al-Zn-In-Mg alloy was investigated through electrochemical techniques and microstructure observation in 3.5 wt% NaCl solution. The results indicated that Al-Zn-In-Mg-0.03Ga alloy has the best discharge performance among all alloys. We propose that this is due to the fact that gallium addition to the Al-4Zn-In-Mg alloy improves the discharge activity of the alloy as well as elevating its anodic efficiency. In particular, the effect of gallium addition to improve discharge activity tends to be a parabolic curve, in which there is an increase when the gallium is first added that rises to the maximum anode current efficiency of about 98.25% whenever gallium content is 0.03 wt%.


2022 ◽  
pp. 283-301
Author(s):  
Bhuvaneshwari Balasubramaniam ◽  
Mohit Saraf ◽  
Shivani Gupta ◽  
Rahul Panth ◽  
Raju Kumar Gupta

Author(s):  
Shang-Lin Yeh ◽  
Piyush Deval ◽  
Jhih-Guang Wu ◽  
Shyh-Chyang Luo ◽  
Wei-Bor Tsai

Electrochemical techniques are highly sensitive and label-free sensing methods for the detection of various biomarkers, toxins, or pathogens. An ideal sensing element should be electroconductive, nonfouling, and readily available for...


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 269
Author(s):  
Biresaw D. Abera ◽  
Inmaculada Ortiz-Gómez ◽  
Bajramshahe Shkodra ◽  
Francisco J. Romero ◽  
Giuseppe Cantarella ◽  
...  

Tetracycline (TC) is a widely known antibiotic used worldwide to ‘’treat animals. Its residues in animal-origin foods cause adverse health effects to consumers. Low-cost and real-time measuring systems of TC in food samples are, therefore, extremely needed. In this work, a three-electrode sensitive and label-free sensor was developed to detect TC residues from milk and meat extract samples, using CO2 laser-induced graphene (LIG) electrodes modified with gold nanoparticles (AuNPs) and a molecularly imprinted polymer (MIP) used as a synthetic biorecognition element. LIG was patterned on a polyimide (PI) substrate, reaching a minimum sheet resistance (Rsh) of 17.27 ± 1.04 Ω/sq. The o-phenylenediamine (oPD) monomer and TC template were electropolymerized on the surface of the LIG working electrode to form the MIP. Surface morphology and electrochemical techniques were used to characterize the formation of LIG and to confirm each modification step. The sensitivity of the sensor was evaluated by differential pulse voltammetry (DPV), leading to a limit of detection (LOD) of 0.32 nM, 0.85 nM, and 0.80 nM in buffer, milk, and meat extract samples, respectively, with a working range of 5 nM to 500 nM and a linear response range between 10 nM to 300 nM. The sensor showed good LOD (0.32 nM), reproducibility, and stability, and it can be used as an alternative system to detect TC from animal-origin food products.


CORROSION ◽  
10.5006/3936 ◽  
2021 ◽  
Author(s):  
Sara Filice ◽  
Joe McDermid ◽  
Joey Kish

The structure and composition of mill scale on linepipe steel formed with and without accelerated cooling conditions (ACC) was investigated and correlated to localized corrosion susceptibility. The mill scale structure/composition was investigated using scanning electron microscopy equipped with X-ray energy dispersive spectroscopy and electron back scatter diffraction, as well as X-ray diffraction. Localized dissolution of the mill scale was investigated using electrochemical techniques including open circuit potential measurements, electrochemical impedance spectroscopy, and electrochemical noise measurements in a corrosive phase solution. The various surface analytical and electrochemical techniques indicated that the mill scale formed without ACC consists of a relatively crack-free, thick inner wüstite layer with a thinner magnetite outer layer. However, the mill scale formed with ACC comprised a magnetite layer containing islands of retained wüstite, with some evidence of magnetite/iron eutectoid formation and which exhibited a relatively high density of through-scale cracks. These cracks can provide direct paths that connect the corrosive solution to the steel substrate, leading to more rapid breakdown of the mill scale. Additionally, the cracks can form a crevice between the mill scale and the steel surface, providing sites for pit initiation and growth. Coefficient of thermal expansion mismatch thermal stress calculations indicate that a magnetite-based scale is more susceptible to cracking/spalling than a wüstite-based scale, resulting in the ACC plate being more susceptible to localized corrosion.


2021 ◽  
Author(s):  
R Mohanreddy ◽  
B M Praveen ◽  
A Alhadhrami

Abstract Pure nickel (Ni) coating and nickel – vanadium pentoxide (Ni-V2O5) nanocomposite coatings have been developed on mild steel substrates by direct current (DC) & pulse current (PC) methods of electrodeposition using sulfamate electrolyte bath by optimizing all the suitable parameters. The surface morphology and texture characterization of pure Ni coating and Ni-V2O5nanocomposite coatings were analyzed by spectroscopic techniques such as Scanning Electron Microscopy (SEM) equipped with an attachment for Energy Dispersive Spectrometry (EDS) & X-ray Diffraction (XRD) spectroscopy analysis. The SEM study confirmed surface morphology of the pure Ni coating was changed by the incorporation of V2O5 nanoparticles in the nickel metal matrix and chemical composition of all the coatings was determined by EDS. XRD study proved highly corrosion resistant nanocomposites show preferred orientation towards (111) plane. The corrosion rate of all the coatings was investigated in 3.5% corrosive medium using electrochemical techniques such as Tafel extrapolation and AC impedance. The coatings developed by PC show enhanced corrosion resistance behavior compare to coatings developed by DC. The 0.125g/L Ni-V2O5nanocomposite coating obtained by PC show more widened semicircle with high Rp value and has more positive shift with high corrosion resistance during AC impedance and Tafel extrapolation analysis respectively. The coatings developed by PC showed improved micro hardness compare to coatings developed by DC during micro hardness testing of all the coatings.


Sign in / Sign up

Export Citation Format

Share Document