Analysis of Creep and Creep-Rupture Data[1],[2]

Keyword(s):  
1978 ◽  
Vol 100 (3) ◽  
pp. 333-335 ◽  
Author(s):  
W. E. White ◽  
Iain Le May
Keyword(s):  

1960 ◽  
Vol 82 (4) ◽  
pp. 839-846 ◽  
Author(s):  
A. Mendelson ◽  
S. S. Manson

A method using finite-difference recurrence relations is presented for direct extrapolation of families of curves. The method is illustrated by applications to creep-rupture data for several materials and it is shown that good results can be obtained without the necessity for any of the usual parameter concepts.


Author(s):  
Jie Zhao ◽  
Dong-ming Li ◽  
Yuan-yuan Fang ◽  
Shi-jie Zhu

It has been noted that the use of safety coefficient can deal with uncertainties existed in practical structures, while reliability concept provides more precise results by considering the real distribution of creep rupture property. Generally, creep rupture data of a heat-resistant steel can be compressed into a narrow band by using a temperature-time parametric method such as Larson-Miller or Manson-Haferd method. In order to describe the scattering of the data, the current paper proposes a “Z parameter” method to represent the magnitude of the deviation of the rupture data to master curve. Statistical analysis shows that the scattering of Z parameter for several types of steels is supported by normal distribution. Using this method, it is possible to achieve unified analysis of the creep rupture data in various temperature and stress conditions. Stress-TTP-Reliability curves (σ-TTP-R curves), Stress-Rupture time-Reliability curves (σ-tr-R curves) and Allowable stress-Temperature-Reliability curves ([σ]-T-R curves) are proposed which could embrace reliability concept into creep rupture property design.


Author(s):  
H.C. Furtado ◽  
L.H. de Almeida ◽  
I. Le May ◽  
R. Peace
Keyword(s):  

Author(s):  
Eugenio Campo ◽  
Donato Ferrara ◽  
Sante Quaranta
Keyword(s):  

1999 ◽  
Vol 121 (3) ◽  
pp. 264-271 ◽  
Author(s):  
R. B. Davies ◽  
R. Hales ◽  
J. C. Harman ◽  
S. R. Holdsworth

A flexible statistical modeling framework for the analysis of creep rupture data is proposed, which offers an improvement on traditional methods of deriving creep rupture strength values and confidence limits. The paper reviews a family of models that can be used to represent the trend relationship between failure times about the trend line, and examines the reliability of extrapolations. Areas of statistical research which would lead to model improvement are discussed, such as variance heterogeneity, left censoring and allowance for the cluster (cast) structure of the data.


2006 ◽  
Vol 326-328 ◽  
pp. 553-556
Author(s):  
Seon Jin Kim ◽  
Yu Sik Kong ◽  
Young Jin Roh ◽  
Won Taek Jung

This paper deals with the statistical properties of short time creep rupture characteristic values (for example, creep rupture time, steady state creep rate, total creep rate, initial strain, etc.) in STS304 stainless steels. From short time creep rupture tests performed by constant stresses at three different elevated temperatures 600, 650 and 700, the scatter and probability distributions were investigated for rupture time, total creep rate, steady state creep rate, initial strain, and others. The effect of temperature on the statistical scatter of rupture time was the smallest at 700. The effect of stress on the statistical scatter of rupture time was smaller with increasing stresses. The probability distributions of short time creep rupture data were well followed 2-parameter Weibull.


1999 ◽  
Vol 27 (3) ◽  
pp. 203 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
R Sandström ◽  
L Lindé
Keyword(s):  

Author(s):  
Masatsugu Yaguchi ◽  
Takuaki Matsumura ◽  
Katsuaki Hoshino

Creep rupture data of welded joints of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the materials has been evaluated. Similar study was conducted by the SHC Committee in 2004 and 2005, therefore, the evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study, in addition to discussion of the effects of product form, welding procedure and test temperature etc. on the creep strength. Almost the same results were obtained on the welded joint of Grade 92 as the previous study, however, the master creep life equations for the welded joints of Grades 91 and 122 were lower than the previous results, especially in the case of Grade 122. Furthermore, the creep strength reduction factor obtained from 100,000 hours creep strength of welded joints and base metal was given as a function of temperature.


Sign in / Sign up

Export Citation Format

Share Document