creep rupture strength
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 112 (1) ◽  
pp. 23-31
Author(s):  
M.O. Nimko

Purpose: This paper aims to assess an influence of thermal welding parameters on microstructural evolution in the weld adjacent zone of P91 steel, overlayed by austenitic consumables, after post weld heat treatment. Design/methodology/approach: Analysis of the width of decarburized layer on microphotographs of overlayed specimens after tempering 750°C, 7 and 18 hours. Specimens were made by using different heat input and preheating temperature parameters. Findings: It is shown that with increase of the heat input energy, the width of the resulting decarbonized layer decreases linearly; the effect of heating temperature on the layer width is parabolic with a minimum at a temperature of ~195°C. Research limitations/implications: Future research may include comparison of the creep rupture strength of the weldments, made with different welding parameters, to assess the influence of kinetics of decarburization and variation of the parameters on creep rupture strength. Practical implications: Results permit to achieve minimization of rate of carbon diffusion in the weld adjacent zone of the HAZ by means of variation of welded parameters. Originality/value: Experimentally was confirmed a role of high-diffusivity paths (grain boundaries) on carbon diffusion in the HAZ of dissimilar weldments; found correlation between welding parameters and the rate of the diffusion during high temperature exposure.


Alloy Digest ◽  
2021 ◽  
Vol 70 (10) ◽  

Abstract ATI X-751 is a high-aluminum version of ATI X-750. It is a high-strength, precipitation hardenable, nickel-chromium alloy that employs nickel and titanium as the hardening elements. The alloy has good creep-rupture strength up to 815 °C (1500 °F), and excellent oxidation and corrosion resistance up to 980 °C (1800 °F). This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-776. Producer or source: ATI.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Abstract Creep deformation behavior, creep strength property and microstructural evolution during creep exposure were investigated on Super 304H steel for boiler tube. In the high stress and lower temperature regime, creep rupture strength of Super 304H steel is higher than that of SUS304H steel. The slope of stress vs. time to rupture curve of Super 304H steel, however, becomes steeper with increase in creep exposure time and temperature, and the creep rupture strength of Super 304H steel becomes closer to that of SUS304H steel after the tens of thousands of hours at 700°C and above. In the short-term, at 600°C, creep rupture ductility increases with increase in creep rupture life. However, it tends to decrease after showing the maximum value and the creep rupture ductility decreases with increase in temperature. The complex shape of creep rate vs. time curves, with two minima in creep rate, was observed at 600°C. Several type precipitates of niobium carbonitride (Nb(C,N)), Z phase (NbCrN), and copper were observed in Super 304H steel, as well as M23C6 carbide and sigma phase observed in SUS304H steel. The change in slope of stress vs. time to rupture curve is caused by disappearance of precipitation strengthening effect during creep exposure. Accuracy of creep rupture life evaluation was improved by stress range splitting method which takes into accounts of the change in slope of stress vs. time to rupture curves was demonstrated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osman Mamun ◽  
Madison Wenzlick ◽  
Jeffrey Hawk ◽  
Ram Devanathan

AbstractThe class of 9–12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough understanding of the long-term properties, e.g., creep rupture strength, rupture life, etc., as a function of the chemical composition and processing parameters that govern the microstructural characteristics. In this article, the creep rupture strength of both 9–12% Cr FMA and austenitic stainless steel has been parameterized using curated experimental datasets with a gradient boosting machine. The trained model has been cross validated against unseen test data and achieved high predictive performance in terms of correlation coefficient ($$R^{2} > 0.98 $$ R 2 > 0.98 for 9–12% Cr FMA and $$R^{2} > 0.95 $$ R 2 > 0.95 for austenitic stainless steel) thus bypassing the need for additional comprehensive tensile test campaigns or physical theoretical calculations. Furthermore, the feature importance has been computed using the Shapley value analysis to understand the complex interplay of different features.


2021 ◽  
Vol 1016 ◽  
pp. 922-927
Author(s):  
Iuliia Mikhailovna Modina ◽  
Alexander V. Polyakov ◽  
Grigory Dyakonov ◽  
Tatyana Vitalyevna Yakovleva ◽  
Andrey G. Stotskiy ◽  
...  

This paper is aimed to study the creep behavior of two-phase ultrafine-grained VT8M-1 (Ti-5.7Al-3.8Mo-1.2Zr-1.3Sn) titanium alloy obtained by rotary swaging (RS). It is shown that the 100-hour creep strength of the ultra-fine grained (UFG) VT8M-1 alloy retains high values at temperatures up to 400 °C. An increase in the testing temperature to >450 °C leads to a decrease in the creep rupture strength. The relationship between the microstructure and creep resistance of UFG alloy is discussed.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Abstract Creep deformation behavior, creep strength property and microstructural evolution during creep exposure were investigated on Super 304H steel for boiler tube. In the high stress and lower temperature regime, creep rupture strength of Super 304H steel is higher than that of SUS304H steel. The slope of stress vs. time to rupture curve of Super 304H steel, however, becomes steeper with increases in creep exposure time and temperature, and the creep rupture strength of Super 304H steel becomes closer to that of SUS304H steel after the tens of thousands of hours at 700°C (1292°F) and above. In the short-term, at 600°C (1112°F), creep rupture ductility increases with increase in creep rupture life. However, it tends to decrease after showing this maximum value and the creep rupture ductility decreases with increase in temperature. The complex shape of creep rate vs. time curves, with two minima in creep rate, was observed at 600°C (1112°F). Several type precipitates of niobium carbonitride (Nb(C,N)), Z phase (NbCrN), and copper were observed in Super 304H steel, as well as M23C6 carbide and sigma phase observed in SUS304H steel. The change in slope of stress vs. time to rupture curve is caused by disappearance of precipitation strengthening effect during creep exposure. Accuracy of creep rupture life evaluation was improved by stress range splitting method which takes into account the change in slope of stress vs. time to rupture curves was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document