Evaluation of Long-Term Creep Strength of Welded Joints of ASME Grades 91, 92 and 122 Type Steels

Author(s):  
Masatsugu Yaguchi ◽  
Takuaki Matsumura ◽  
Katsuaki Hoshino

Creep rupture data of welded joints of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the materials has been evaluated. Similar study was conducted by the SHC Committee in 2004 and 2005, therefore, the evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study, in addition to discussion of the effects of product form, welding procedure and test temperature etc. on the creep strength. Almost the same results were obtained on the welded joint of Grade 92 as the previous study, however, the master creep life equations for the welded joints of Grades 91 and 122 were lower than the previous results, especially in the case of Grade 122. Furthermore, the creep strength reduction factor obtained from 100,000 hours creep strength of welded joints and base metal was given as a function of temperature.

Author(s):  
Masatsugu Yaguchi ◽  
Kaoru Nakamura ◽  
Sosuke Nakahashi

Creep rupture data of welded joints of ASME Grade 91 type steel have been collected from Japanese plants, milling companies and institutes, and the long-term creep rupture strength of the material has been evaluated. This evaluation of welded joints of Grade 91 steel is the third one in Japan as similar studies were conducted in 2004 and 2010. The re-evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained since the previous study, with durations of the new data of up to about 60000h. The new long-term data exhibited lower creep strength than that obtained from the master creep life equation for welded joints of Grade 91 steel determined in 2010, then the master creep life equation was again reviewed on the basis of the new data using the same regression method as that used in 2010. Furthermore, the weld strength reduction factors obtained from 100000h creep strength of welded joints and the base metals are given as a function of temperature, where the master creep equations of the base metals are also redetermined in this study.


Author(s):  
Masaaki Tabuchi ◽  
Yukio Takahashi

In order to review the allowable creep strength of high Cr ferritic steels, creep rupture data of base metal and welded joints have been collected and long-term creep strength have been analyzed in the SHC committee in Japan since 2004. In the present paper, the creep rupture data of 370 points for welded joint specimens of modified 9Cr-1Mo steel (ASME Grade 91) offered from seven Japanese companies and institutes were analyzed. These data clearly indicated that the creep strength of welded joints was lower than that of base metal due to Type IV fracture in HAZ at or above 600°C. From the activities of this committee, the master curve for life evaluation of welded joints of Gr.91 steel could be represented as follows: LMP==34154+3494(logσ)−2574(logσ)2,C=31.4 The reduction factor of 100,000 hours creep rupture strength of welded joint to base metal was concluded to be 0.75 at 600°C and 0.70 at 650°C for the Gr.91 steel.


Author(s):  
Kazuhiro Kimura ◽  
Yukio Takahashi

Creep rupture data of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the steels has been evaluated. Similar study was conducted by the SHC committee in 2004 and 2005, therefore, the evaluation of long-term creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study. Creep rupture strength was analyzed by means of region splitting analysis method in consideration of 50% of 0.2% offset yield strength, in the same way as the previous study. Almost the same results were obtained on base metal of Grade 92 as the previous study, however, evaluated 100,000 hours creep rupture strength of base metal of Grades 91 and 122 were lower than the previous results. For Grades 91 and 122 type steels, moreover, creep rupture strength of the plate steel were lower than those of pipe and forging steels. Tendency to decrease with increase in nickel content was observed on long-term creep rupture strength of tube steel of Grade 91 at 600°C. According to the evaluation of long-term creep strength of the steels, allowable tensile stress was reviewed and proposed revision was concluded.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Masakazu Fujitsuka ◽  
Hideaki Kushima

Creep test of ASME Grade 23 steel has been conducted at 625 and 650°C in helium gas atmosphere. Long-term creep strength of the steel in helium gas was compared with that in air and the influence of oxidation on long-term creep strength was investigated. Creep rupture strength drop was observed in the long-term at 625 and 650°C in air, and the same creep rupture strength drop was observed also in helium gas at 625°C. On the other hand, although creep rupture strength drop was observed in the long-term at 650°C in helium gas, creep rupture life in the long-term in helium gas was slightly longer than that in air at 650°C. Creep rupture life in the long-term at 650°C in air is reduced by not only degradation due to microstructural change, but also marked oxidation, however, that at 625°C is considered to be shortened mainly by a degradation caused by microstructural change. Long-term creep strength of ASME Grade 23 steel at 600°C and above should be reevaluated in consideration of strength drop due to microstructural change.


Author(s):  
Kazuhiro Kimura ◽  
Masatsugu Yaguchi

Creep rupture strength of ASME Grades 91, 92, 122 and 23 type steels were evaluated by the SHC committee in 2004 and 2005, and the Assessment Committee on Creep Data of High Chromium Steels in 2010. According to the evaluation of creep rupture strength, allowable stress of the steels was revised and weld strength reduction factor (WSRF) was established. In 2015, the creep rupture data of those steels was collected from materials producers, power plant manufacturers and institutes in Japan and a review of long-term creep rupture strength of the steels was conducted by the Assessment Committee on Creep Data of High Chromium Steels in reference to the previous evaluation. It has been confirmed with the latest dataset that re-evaluation of long-term creep rupture strength is not required for Grades 92, 122 and 23 type steels. On the other hand, lower creep rupture strength compared with the previous evaluation was recognized on the new creep rupture data of Grade 91 steels, therefore, re-evaluation of creep rupture strength was conducted on Grade 91 steels. Creep rupture strength was assessed by means of region splitting analysis method in consideration of 50% of 0.2% offset yield strength, in the same way as the previous study. According to the evaluation of long-term creep strength of the steels, allowable tensile stress was reviewed and proposed revision was concluded.


Author(s):  
Kazuhiro Kimura ◽  
Hideaki Kushima ◽  
Kota Sawada ◽  
Yoshiaki Toda

Overestimation of long-term creep strength of creep strength enhanced ferritic steels is caused by inflection of a relation between stress and time to rupture. Creep rupture strength of those steels has been re-evaluated by a region splitting analysis and allowable tensile stress of some steels regulated in METI (Ministry of Economy, Trade and Industry) Thermal Power Standard Code in Japan has been reduced. A region splitting analysis method evaluates creep rupture strength in the short- and the long-term individually, which is separated by 50% of 0.2% offset yield stress. Inflection of stress vs. time to rupture curve is attributable to longer creep rupture life with a stabilized microstructure of creep strength enhanced ferritic steels, since tensile strength property, which determines short-term creep rupture strength, remains the same level. Accuracy of creep rupture strength evaluation is improved by region splitting analysis. Delta ferrite produces concentration gap due to difference in equilibrium composition of austenite and ferrite at the normalizing temperature. It increases driving force for diffusion and promotes recovery of tempered martensite adjacent to delta-ferrite. Concentration gap may be produced also in heat affected zone (HAZ), especially in fine grain HAZ similar to that in dual phase steel, and it has possibilities to promote recovery and, therefore, to decrease creep strength.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
K. Maruyama ◽  
J. Nakamura ◽  
K. Yoshimi

Creep rupture strength of creep strength enhanced ferritic steels is often overestimated, and its evaluated value has been reduced repeatedly. In this paper, the cause of the overestimation is discussed, and the creep rupture strength of T91 steel is assessed with its updated creep rupture data. Effects of residual Ni concentration on the creep rupture strength and necessity of F factor in T91 steel are also discussed. Decrease in activation energy Q for rupture life in long-term creep is the cause of the overestimation, since conventional time–temperature parameter (TTP) methods cannot deal with the change in Q. Due to the decrease in Q, long-term creep rupture strength evaluated decreases as longer-term data points are added or shorter-term data points are discarded in the conventional TTP analysis. The long-term region with small values of activation energy and stress exponent is named region L2 in this paper. Region L2 appears in all the heats of T91 steel and plate products of Gr.91 steel. Since service conditions of the T91 steel are usually in region L2, the creep rupture strength under the service conditions should be evaluated from the rupture data in region L2 only. The 5 × 105 hrs rupture strength at 550 °C decreases from 129 MPa (evaluated from the whole data of T91 steel) to 79 MPa (evaluated from the data in region L2 only) with increasing cut-off time for data selection. The 105 hrs rupture strength at 600 °C also decreases from 87 MPa (whole data) to 70 MPa (region L2 only) despite sufficient number of long-term data points at 600 °C. Careful consideration on the data selection is necessary in evaluation of creep rupture strength of the T91 steel. A multiregion rupture data analysis (MRA) is helpful to select data points belonging to region L2.


Author(s):  
Tomoaki Hamaguchi ◽  
Hirokazu Okada ◽  
Shinnosuke Kurihara ◽  
Hiroyuki Hirata ◽  
Mitsuru Yoshizawa ◽  
...  

The new ferritic heat-resistant steel composed of 9Cr-3W-3Co-Nd-B, registered as ASME Code Case 2839, has been developed for large diameter and heavy wall thickness pipes and forgings of fossil-fired power boilers. The steel, which contains 0.01 mass% boron, a small amount of neodymium, and optimized amounts of nitrogen, is characterized by the superior long-term creep strengths of both the base metal and welded joint. P92 had equiaxed subgrain structures changed from martensite lath structures and coarsened M23C6 type carbides after long-term creep. In contrast, the developed steel, SAVE12AD, maintained martensite lath structures with fine M23C6 along the boundaries even after the long-term creep stage. The addition of high amounts of boron suppressed the coarsening of M23C6 along the boundaries, thereby stabilizing the martensite lath structure in the base metal of the steel. Consequently, SAVE12AD had higher creep rupture strength than other high chromium ferritic steels. To investigate the creep rupture strength of welded joints, two welded joints with Ni-based alloy and Grade 92 welding filler wires were prepared by automatic gas tungsten arc welding. The creep rupture strength of each welded joint showed small degradation compared with the base metal in the long-term creep stage over 10,000 hours. These were ruptured 1.5 mm away from the fusion line, which was the same area as Type IV cracking. Microstructural observations were carried out by electron back scatter diffraction analysis using simulated heat-affected zone samples at different peak temperatures from 750 °C to 1350 °C in order to clarify the microstructure in the heat-affected zone. No fine grain area was observed in the microstructure after the simulated heat-affected zone at 910 °C just above AC3 transformation temperature, although there were fine grains along prior austenite grain boundaries, which seemed to form with the diffusion transformation. The creep cracks seemed to have initiated from the fine grain structures, resulting in the rupture at the same area as Type IV cracking. However, the creep rupture strength degradation of the welded joints against the base metal was significantly smaller than that of conventional steel welded joints owing to the suppression of fine grains found in the heat-affected zone heated around AC3 temperature. The developed 9Cr-3W-3Co-Nd-B steel (SAVE12AD) will be used for large diameter and heavy wall thickness pipes and forgings in 600 °C ultra super critical power plants.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Fujio Abe

Abstract The influence of oxidation on the estimation of long-term creep rupture strength is investigated for 2.25% chromium (Cr)–1% molybdenum (Mo) steel specified as JIS STBA 24, JIS SCMV 4 NT, and ASTM A542/A542M by the Larson–Miller method using creep rupture data in the National Institute for Materials Science (NIMS) Creep Data Sheets at 450–650 °C for up to 313,000 h. The creep rupture data exhibit a change in slope of the stress versus time to rupture curves due to oxidation in air during 600 °C creep tests at 15,000–40,000 h and 650 °C tests at 2000–3500 h for different size specimens, which indicates degradation in creep life by the oxidation. The estimated 100,000 h creep rupture strength using regression analysis is increased by the elimination of long-term data degraded by the oxidation. Several metallurgical factors, such as the initial strength represented by the 0.2% proof stress at the creep test temperature and the concentration of aluminum (Al) impurity, also affect the creep life of the tested steel.


Sign in / Sign up

Export Citation Format

Share Document