Life Assessment of Steam-Turbine Components

1989 ◽  
pp. 265-328

Abstract This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods for the most-failure prone components beginning with rotors and continuing on to casings, blades, nozzles, and high-temperature bolts. The chapter makes extensive use of images, diagrams, data plots, and tables and includes step-by-step instructions where relevant.

2021 ◽  
pp. 146-166
Author(s):  
Arun Sreeranganathan ◽  
Douglas L. Marriott

Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.


Author(s):  
Rhett Dotson ◽  
Chris Holliday ◽  
Luis Torres ◽  
Damien Hagan

A significant amount of effort has been expended in the area of advancing pipeline dent remaining life assessment methods beginning in the late 1980s and extending to the current day. Initial research efforts were primarily empirical in nature while more recent research efforts have incorporated finite element modelling. Coupled with advancements in assessment techniques, the capabilities of advanced in-line inspection (ILI) tools have increased to a point where they can provide consistent, reliable information that is suitable for dent assessments. As a result of these advancements in assessment models and ILI tools, operators can now perform remaining life assessments using ILI data, and a multitude of remaining life assessment models are available, including solutions from the European Pipeline Research Group (EPRG), Pipeline Research Council International (PRCI), American Petroleum Institute (API), and finite-element based approaches. In addition to these remaining life assessments, many operators routinely perform strain-based assessments based on guidance from ASME B31.8. To date, there have been few studies comparing the various assessment methods on large numbers of dents, and as a result, significant questions persist as to the conservatism inherent in each method. In addition, the EPRG and PRCI methods are largely based on full-scale testing and finite-element models performed with idealized indenter shapes while actual pipeline dents typically exhibit complex shapes and interactions between multiple dents. Each model also has limitations and advantages that are discussed in this paper, such as ease of use and how pipeline geometry and weld association are considered. This paper provides a robust comparison of selected dent assessment methodologies on 220 actual dents from a 24-inch pipeline with depths ranging from 0.6–4.5% OD, and 32 dents from a 30-inch line with depths ranging from 1–2.5% OD. The assessment includes both top and bottom of line dents and investigates the influence of restraint on remaining life. The results presented in the paper are based on high-resolution ILI caliper data collected during two in-line inspections. Furthermore, the paper provides statistical comparisons between strain and remaining life methodologies and also between the various remaining life assessments. The paper also provides a comparison of the restraint parameter from the PRCI model with calculated stress concentration factors from finite-element models. The paper provides a first of its kind comparison of the various methods and discusses how the work may be extended to other pipe diameters and wall thicknesses.


1989 ◽  
pp. 1-20

Abstract The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.


Sign in / Sign up

Export Citation Format

Share Document