Variations of radon concentration and gamma dose rate on tectonic structures in metamorphic rocks and granitoids (Bohemian Massif)

Author(s):  
Petra Pacherová ◽  
Michal Poňavič ◽  
Ivan Barnet
2021 ◽  
Author(s):  
Giorgia Cinelli ◽  
Peter Bossew ◽  
Marc De Cort ◽  
Valeria Gruber ◽  
Tore Tollefsen

<p>As the scientific and knowledge service of the European Commission, the mission of the Joint Research Centre (JRC) is to support EU policies with independent evidence throughout the whole policy cycle. In particular, the JRC provides this support to the Directorate General for Energy by collecting, evaluating and reporting artificial environmental radioactivity measurements both for routine (REM database) and emergency preparedness (European Radiological Data Exchange Platform) purposes.<br>However, with the exception of potential large scale nuclear accidents, natural ionizing radiation is the largest contributor to the collective effective dose received by the world population. To gain a clearer overview of the natural sources of radioactivity, the JRC launched the European Atlas of Natural Radiation with the aim to provide insight into geographical variability of exposure components and their relative importance for total exposure to ionizing radiation.</p><p>The Atlas presents contributions from 100 experts in various fields, from 60 institutions such as universities, research centres, national and European authorities, and international organizations. In the first place, this Atlas aims to provide reference values and generate harmonised data for the scientific community and national competent authorities. It also offers an opportunity to the public to become familiar with the radioactive part of its natural environment. Intended as an encyclopaedia on natural radioactivity, the Atlas explains its different sources, i.e. cosmic and terrestrial radiation, and describes the current state-of-the art of knowledge by means of text, graphics and maps.</p><p>Being responsible for half of the natural dose, particular attention has been given to indoor radon, of which over one million measurements of long-term indoor radon concentration in ground-floor rooms of dwellings from 36 European countries were collected and aggregated as means within 10 km × 10 km grid cells. The updated version of the European Indoor Radon Map (December 2020) will be presented as well as the statistical analysis of the input data.</p><p>Geogenic Radon Potential and Geogenic Radon Hazard Index quantify the contribution of geogenic to indoor radon and are constructed using geogenic quantities, such as uranium concentrations in the ground, geology, soil permeability, soil radon concentration and terrestrial gamma dose rate.<br>Therefore, it was decided to focus the Atlas on the development of maps that display natural sources of radiation and also serve as quantities which predict geogenic radon. Maps of uranium, thorium and potassium concentrations in soil, covering most European countries, were created, while maps of uranium, thorium and potassium concentrations in bedrock are only available for some countries. A methodology for estimating the terrestrial gamma dose rate (based on ambient dose equivalent rate measurements) has been established, while the European terrestrial gamma dose rate map has been created using uranium, thorium and potassium concentration in soil. The practical use of the maps of the Atlas as geogenic quantities will be illustrated through different examples of scientific studies.</p><p>The Atlas is available in digital format and can be ordered as a printed version at https://remon.jrc.ec.europa.eu/ .</p><p> </p>


Nukleonika ◽  
2018 ◽  
Vol 63 (4) ◽  
pp. 113-121
Author(s):  
Nan Gan ◽  
Kuang Cen ◽  
Rong Ye ◽  
Ting Li

Abstract The surveys of terrestrial gamma dose rate, radon concentration indoor and in water and specific activity of radionuclides of soil were carried out in 14 villages and a town in Xiangshan uranium deposit and surrounding area, Jiangxi province, Eastern China, in 2017-2018, using a scintillator dosemeter, an ionization chamber and a high-purity germanium gamma spectrometer to study radiation status in these places after remediation. A radioactive hot spot was discovered in a village near the mining office, where specific activity of 238U, 226Ra, 232Th and 137Cs of soil was as high as 1433 ± 76 Bq/kg, 1210 ± 62 Bq/kg, 236 ± 13 Bq/kg and 17 ± 1.1 Bq/kg, respectively. The dose rate on a waste rock heap was about 2423 nGy/h. Approximately 50% of the houses in a village near the uranium mining site had radon concentrations that exceeded 160 Bq/m3. There was a significant positive correlation between indoor radon concentration and outdoor gamma dose rate (R2 = 0.7876). The abnormal radon concentration was observed in a rising spring sample providing residents with tap water up to 127.1 Bq/l. Four tap water samples and three of five well water samples exceeded the limit of radon concentration of drinking water in China (11.1 Bq/l). The mean annual effective doses from gamma dose rate data were 0.86 mSv/y and 1.13 mSv/y for indoor radon. The study shows that there are some radioactively contaminated places surrounding the Xiangshan uranium mine. The local outdoor dose rate averages may be used to estimate local indoor radon concentrations.


2010 ◽  
Vol 10 (4) ◽  
pp. 895-899 ◽  
Author(s):  
J. Vaupotič ◽  
A. Gregorič ◽  
I. Kobal ◽  
P. Žvab ◽  
K. Kozak ◽  
...  

Abstract. The Ravne tectonic fault in north-west (NW) Slovenia is one of the faults in this region, responsible for the elevated seismic activity at the Italian-Slovene border. Five measurement profiles were fixed in the vicinity of the Ravne fault, four of them were perpendicular and one parallel to the fault. At 18 points along these profiles the following measurements have been carried out: radon activity concentration in soil gas, radon exhalation rate from ground, soil permeability and gamma dose rate. The radon measurements were carried out using the AlphaGuard equipment, and GammaTracer was applied for gamma dose rate measurements. The ranges of the obtained results are as follows: 0.9–32.9 kBq m−3 for radon concentration (CRn), 1.1–41.9 mBq m−2 s−1 for radon exhalation rate (ERn), 0.5–7.4×10-13 m2 for soil permeability, and 86–138 nSv h−1 for gamma dose rate. The concentrations of 222Rn in soil gas were found to be lower than the average for Slovenia. Because the deformation zones differ not only in the direction perpendicular to the fault but also along it, the behaviour of either CRn or ERn at different profiles differ markedly. The study is planned to be continued with measurements being carried out at a number of additional points.


2018 ◽  
Vol 174 ◽  
pp. 54-65 ◽  
Author(s):  
D.E. Tchorz-Trzeciakiewicz ◽  
A.T. Solecki

Sign in / Sign up

Export Citation Format

Share Document