Freeze-Thaw Durability of Concrete with Ground Waste Tire Rubber

Author(s):  
Banu Zeynep Savas ◽  
Shuaib Ahmad ◽  
David Fedroff

Used tires represent an increasingly serious environmental problem in the United States. This study examines the freeze-thaw durability of concrete with ground waste tire rubber. Various percentages of rubber, by weight of cement, were added to a control concrete mixture. To evaluate the freeze-thaw durability of these “rubcrete” mixtures, freeze-thaw tests in accordance with ASTM C666 Procedure A and microscopic analyses in accordance with ASTM C457 Procedure B, were conducted. Results show that the rubcrete mixtures with 10 and 15 percent rubber by weight of cement are freeze-thaw durable. Results of the microscopic analysis indicate that properties such as air content and spacing factors are difficult to determine accurately because of the problems associated with polishing of the rubcrete specimens.

2016 ◽  
Vol 700 ◽  
pp. 183-196 ◽  
Author(s):  
Ahmad Azrem Azmi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Che Mohd Ruzaidi Ghazali ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin ◽  
...  

Utilization of waste materials such as waste tire rubber in the building industry can help prevent environmental pollution whilst contributing to the design of more economical buildings. Preliminary studies show that workable rubberized portland cement concrete mixtures can be made provided that appropriate percentages of tire rubber are used in such mixtures. This article provides the overview of some of published paper using tire waste rubber in portland cement concrete. The researchers mostly investigated the properties of fresh and hardened concrete. The workability, density, air content, unit weight, compressive strength, modulus of elasticity, freezing and thawing resistance, abrasion resistance and thermal properties of the waste tire rubber in concrete were discussed.


2021 ◽  
Vol 302 ◽  
pp. 124229
Author(s):  
Oguzhan Yavuz Bayraktar ◽  
Hasan Soylemez ◽  
Gokhan Kaplan ◽  
Ahmet Benli ◽  
Osman Gencel ◽  
...  

2020 ◽  
Vol 268 ◽  
pp. 122216 ◽  
Author(s):  
Soudabeh Dezhampanah ◽  
ImanM. Nikbin ◽  
Shahin Charkhtab ◽  
Faezeh Fakhimi ◽  
Sadegh Mehdipour Bazkiaei ◽  
...  

2002 ◽  
Vol 84 (3) ◽  
pp. 622-631 ◽  
Author(s):  
Amit K. Naskar ◽  
Anil K. Bhowmick ◽  
S. K. De

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Wei Sun

For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder) and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2007 ◽  
Vol 28 (7) ◽  
pp. 2234-2238 ◽  
Author(s):  
D. García ◽  
J. López ◽  
R. Balart ◽  
R.A. Ruseckaite ◽  
P.M. Stefani

2010 ◽  
Vol 75 (6) ◽  
pp. 845-853 ◽  
Author(s):  
Hassan Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

The influence of pH, adsorbent dose, initial Cu(II) concentration and contact time on the removal of Cu(II) from aqueous solution by the batch adsorption technique using waste tire rubber ash as a low-cost adsorbent was investigated. The adsorption equilibrium was achieved after 2 h at pH 4-6, the optimum for the adsorption of Cu(II) ions. A dose of 1.5 g/L of adsorbent was sufficient for the optimum removal of copper ions. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the corresponding sorption constants were evaluated. The adsorption kinetics data were fitted by a first-order equation. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that waste tire rubber ash was capable of removing copper ions from industrial wastewater samples.


Sign in / Sign up

Export Citation Format

Share Document