Interpretation of Indirect Tension Test Based on Viscoelasticity

Author(s):  
A. Drescher ◽  
D. E. Newcomb ◽  
W. Zhang

The diametral indirect tension test is a convenient configuration for determining the modulus of asphalt concrete samples. The resilient modulus test has been a traditional approach to characterizing the stiffness of asphalt concrete, but it leaves much to be desired when considering the viscous behavior this material exhibits, even at low temperatures. A method for determining the complex compliance, complex modulus, and phase angle of asphalt mixtures using the indirect tensile test and a haversine load history is presented here. This test may be performed over a range of frequencies and temperatures as demonstrated on materials used in the Minnesota Road Research Project. The use of the haversine loading simplifies the test when compared with the pulse loading and rest time used in the resilient modulus test, and it allows for the characterization of the elastic and viscous components of the material's overall behavior, which is very difficult, at best, with the current test methods.

2014 ◽  
Vol 507 ◽  
pp. 353-360 ◽  
Author(s):  
Amiruddin Ismail ◽  
Mojtaba Shojaei Baghini ◽  
Mohamed Rehan Karim ◽  
Foad Shokri ◽  
Ramez A. Al-Mansob ◽  
...  

Cement-Treated Base (CTB) is a non-conventional method used in road bases materials to improve its engineering properties due to the hardening of cement when moisture is present and extends the period of curing times. This study investigates the effects of cement additive on properties of base layer using laboratory mechanistic evaluation of stabilized soil mixtures. Laboratory tests conducted were Unconfined Compressive Strength (UCS), Indirect Tension test for Resilient Modulus (ITRM) and Flexure Strength (FS) tests. The results revealed that by adding Portland cement, the mechanical properties of the mixture have improved where the UCS is found to be an important quality indicator. In addition, the variables that influenced these tests, which are cement content, curing time, moisture content, and dry density, play important role to determine the performance of CTB. This paper presents the finding of a correlation conducted to analyse the influences of these variables using regression and ANOVA to establish significant models with the aim of predicting the strength base on mixture parameters. Keywords: Cement-Treated Base, Unconfined Compressive Strength, Indirect Tension test for Resilient Modulus, Flexure Strength, Moisture Content, Dry Density, Regression Analysis.


Sign in / Sign up

Export Citation Format

Share Document