unconfined compressive strength
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 292)

H-INDEX

35
(FIVE YEARS 7)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 177
Author(s):  
Huayong Lv ◽  
Defeng Wang ◽  
Zhanbo Cheng ◽  
Yaning Zhang ◽  
Tao Zhou

There are normally pre-existing cracks that can be observed in the coal seam and immediate roof that influences the stability of the rib spalling and the movement law of overlying strata. In this study, comprehensive research methods (e.g., theory analysis, experimental tests and numerical simulations) were adopted to reveal the mechanical characteristics, acoustic emission behaviors and failure modes of a coal–mudstone combined body with a single prefabricated non-penetrating crack. The results show that the influence of the crack angle on the elastic modulus of the coal–mudstone combined body samples was limited. With the increase in the crack angle, the unconfined compressive strength of samples decreased first and then increased in a V-shaped trend. In addition, the minimum unconfined compressive strength could be observed at a crack angle of 45°. Moreover, the number of acoustic emissions significantly increased with the process of continuous loading. In addition, the stress reduction zone could be observed in both ends of the prefabricated cracks at the initial stage of loading. The high- and low-stress zones were transformed with the process of continuous loading. Under an unconfined compression test, the failure models of the coal body part in the samples were mainly caused by shear failure, and only a few cracks occurred in the upper tip of the prefabricated cracks of the mudstone part. Therefore, airfoil cracks could be observed in the samples due to the strength difference of the coal mass and mudstone.


2022 ◽  
Vol 10 (4) ◽  
pp. 1063-1080
Author(s):  
Zhongnan Gao ◽  
Xiumei Zhong ◽  
Qian Wang ◽  
Yongqi Su ◽  
Jun Wang

2022 ◽  
Vol 2148 (1) ◽  
pp. 012066
Author(s):  
Cheng Shi ◽  
Jinghu Ding ◽  
Junjie Chen ◽  
Fangzhou Chu

Abstract Cemented soil fill is a new backfilling technology developed for the problems of narrow foundation trenches and uncompacted backfilling. It has good fluidity before solidification and higher strength and stiffness after solidification. This type of fill materials makes full use of the waste soils. The proportioning test was carried out on excavated soil on a construction site. Liquid property tests and unconfined compressive strength tests was carried out. The results show that the cemented soil fill can meet the requirement of foundation trenches backfilling, which has great prospect for future applications.


2021 ◽  
Author(s):  
Xiaoyu An ◽  
Dianjun Zuo ◽  
Fei Wang ◽  
Chao Liang

Abstract The cement solidification/stabilization method of heavy metal contaminated soils has been promoted in engineering practice and applied on a large scale for site remediation, but it still reveals some scientific problems in the current complex and variable global extreme climate. To solve these problems and explore cement-based soil remediation technology, this study used the waste soda residue produced in large quantities in the "ammonia-soda process" as a composite additive, and established an innovative composite model of cement and soda residue by adding different ratios, which was applied to the remediation experiments of lead-contaminated soil. The innovative composite model solidification/stabilization of cement and soda residue for unconfined compressive strength and toxic leaching properties under different soil environmental conditions were investigated. Moreover, curing and leaching mechanisms are discussed, and future industrial practice was evaluated. The results showed that the addition of soda residue improved the early (20 days) unconfined compressive strength (UCS) of the composite curing agent for lead-contaminated soil by an average of 23.1% Mpa. When the percentage of soda residue composite was 40%, the UCS strength was 0.96 Mpa, which reached the maximum. The concentration of Pb2+ in the leachate of the cement-soda residue composite curing agent was greatly reduced (average 3.28 times) compared with that of a single cement in the same situation, with an average leached Pb2+ concentration of 1.87 mg·L-1. This indicates that the addition of alkali residue improved the curing effect. The curing mechanism was divided into four steps, mainly a complex physicochemical reaction between the cement-soda residue composite and soil particles. The leaching mechanism of cement-soda residue to aqueous solution is mainly the consumption of acid ions by alkaline substances. This study will provide scientific data to support potential lead-containing soil in site remediation technologies and future large-scale engineering applications.


2021 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Yang Zhao ◽  
Qian Wang ◽  
Mengnan Yuan ◽  
Xi Chen ◽  
Zhiyang Xiao ◽  
...  

Microbial-induced calcium carbonate precipitation (MICP) is a new soil remediation technology, which can improve the physical and mechanical properties of soil by transporting bacterial solution and cementation solution to loose soil and precipitating calcium carbonate precipitation between soil particles through microbial mineralization. Based on this technique, the effects of different fine particle content and pore ratio on the physical and chemical properties of silt after reinforcement were studied. The content of calcium carbonate, the ability of silt to fixed bacteria, unconfined compressive strength (UCS), permeability coefficient and microstructure of the samples were determined. The results showed the following: In the process of calcium carbonate precipitation induced by microorganisms, more than 50% bacterial suspension remained on the surface of silt particles and their pores. The higher the bacterial fixation rate of silt, the more CaCO3 was generated during the solidification process. The bacterial fixation rate and CaCO3 content both decreased with the increase in the pore ratio and increased with the increase in the fine particle content. XRD and SEM images show that the calcium carbonate is mainly composed of spherical vaterite and acicular cluster aragonite. There is an obvious correlation between unconfined compressive strength and CaCO3 content of silt. When CaCO3 content accumulates to a certain extent, its strength will be significantly improved. The unconfined compressive strength of silt A with pore ratio of 0.75 and fine particle content of 75% is 2.22 MPa when the single injection amount of cementing fluid is 300 mL. The permeability coefficient of cured silt can be reduced by 1 to 4 orders of magnitude compared with that of untreated silt. In particular, the permeability of MICP-treated silt A is almost impermeable.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 14
Author(s):  
Yuanlong Wang ◽  
Yongqi Zhao ◽  
Yunshan Han ◽  
Min Zhou

This study aimed to determine the effect of circulating fluidised bed bottom ash (CFB-BA) content on the mechanical properties and drying shrinkage of cement-stabilised soil. Experiments were performed to study the changes in unconfined compressive strength and expansibility of cement-stabilised soil with different CFB-BA contents and the underlying mechanisms based on microscopic properties. The results show that CFB-BA can effectively increase the unconfined compressive strength of the specimen and reduce the amount of cement in the soil. When the combined content of CFB-BA and cement in the soil was 30%, the unconfined compressive strength of the specimen with C/CFB = 2 after 60 days of curing was 10.138 MPa, which is 1.4 times that of the pure cement specimen. However, the CFB-BA does not significantly improve the strength of the soil and cannot be added alone as a cementing material to the soil. Additionally, swelling tests showed that the addition of CFB-BA to cement-stabilised soil can significantly reduce the drying shrinkage. This research project provides reference values for the application of CFB-BA in cement–soil mixing piles, including compressive strength and the reduction in the shrinkage deformation of specimens.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lina Xu ◽  
Daohan Song ◽  
Ning Liu ◽  
Wei Tian

Concrete materials are an important part of global structure, and their fire resistance directly affects the safety of buildings and tunnels. In this study, basalt fiber was used to reinforce concrete with high content of stone powder in order to enhance its high-temperature performance. The mechanical properties and ultrasonic characteristics at different temperatures were studied using the cube compressive strength test and nonlinear ultrasonic test. The results indicated that the addition of basalt fiber in specimens improved their compressive strength; however, this strength did not continuously increase with increases in the fiber length and fiber content, and the optimal values for fiber length and fiber content were determined to be 12 mm and 1 kg/m3 at 600°C, respectively. With increases in temperature, the unconfined compressive strength increased first and then decreased. When the temperature was 400°C, the unconfined compressive strength of the specimens reached their highest values and then decreased. When the temperature was 400°C and 600°C, the strength of the stone powder concrete with fiber was higher than that without fiber, which shows that fiber can improve the mechanical properties of concrete at high temperatures. Based on the Box-Behnken design (BBD) method, the unconfined compressive strength response regression model of basalt fiber-reinforced concrete with high content of stone powder, which follows parameters including fiber content, fiber length, and temperature at high-temperature environments, was established, and it was found that the interaction of fiber content, fiber length, and the temperature was significant based on multifactor interaction analysis. The analysis of ultrasonic signals based on the S transform showed that, with increases in temperature, the amplitudes of the acoustic response signals, the corresponding frequency spectrum, and the time-frequency spectrum were clearly reduced. At the same temperature, the amplitudes of the acoustic response signals of different concrete testing blocks did not change much and remained at the same level.


Sign in / Sign up

Export Citation Format

Share Document