indirect tension
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jie Liu ◽  
Gangyuan Jiang ◽  
Taoying Liu ◽  
Qiao Liang

To investigate different responses of direct and indirect tensile strengths to loading rate, direct and indirect tension tests were performed on sandstone, rust stone, and granite specimens. Typical load curves indicate that a peak tensile stress frequently appears before the second peak stress, used to calculate the tensile strength in indirect tension tests. As expected, increase in the loading rate increases the tensile strength. In addition, the calculated tensile strengths of the indirect tension tests are frequently higher. Interestingly, the increase ratio of the tensile strength with the increase in the loading rate in indirect tension tests is higher. To verify the above results, crack propagation and stress evolution in direct and indirect tension tests were dynamically monitored using PFC 3D. For direct tension tests, specimens fail at the peak tension point, corresponding to the tensile strength. However, for indirect tension tests, minor cracks, composing of continuous microcracks, form before the peak stress and accompany with the decreased slope of the compression curve. At the peak point, tensile stresses significantly concentrate at the crack tips and further cause large-scale crack propagation. In addition, the initiation stress instead of the peak tensile stress is closer to the tensile strength, obtained from the direct tests for the same loading rate.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032093
Author(s):  
Stanisław Majer ◽  
Bartosz Budziński

Abstract The use of additives in bituminous mixtures such as fibers has been the subject of various studies. Different fibres including cellulose fibres, steel fibres, basalt fibres, glass fibres and aramid fibres can be used to improve the properties of bituminous mixtures. Depending on the type of fibres used, different characteristics can be changed. The paper contains results of comparative tests of bituminous mixtures with aramid-polyolefin fibres. Asphalt concrete used for wearing course with maximum aggregate size of 11 mm was evaluated in the study. Reference mix with an average penetration grade of 50/70 was chosen as a base for modifications. Due to difficulty in preparing mixtures with fibers in a laboratory mixer, test specimens were obtained from a stationary plant. The fibers and aggregate mix was prepared before adding the asphalt. The fibers were added at a rate of 0.5 kg per 1000 kg of finished bituminous mixture. This allowed to obtain an even distribution of fibers in the mixture resulting in a homogeneity necessary for planned tests. This allowed to omit the scale effect, that could occur due to differences between laboratory and stationary mixing. Stiffness modulus tests were performed using the IT-CY (Indirect Tension to Cylindrical Specimens) method for a wide temperature range of 0-30°C. The specimen resistance to permanent deformation was evaluated. Obtained results has shown a clear increase in the resistance to permanent deformation of mixtures with aramid- polyolefin fibers, which is especially important for mixtures used for wearing course. The results has also shown a significant increase in the stiffness modulus regardless of temperature range. Results of conducted experiments has shown that it is possible to reduce the thickness of bituminous overlay in case of reinforcement of the existing pavement structure. The analysis of results has shown that the application of aramid-polyolefin fibres in bituminous mixtures can improve the functional features of the pavement and be beneficial to the investors.


Author(s):  
Md Amanul Hasan ◽  
Rafiqul A. Tarefder

This study presents a new mechanistic procedure for determining the critical cracking temperature of asphalt concrete (AC) using data from bending beam rheometer (BBR) test of asphalt binder and indirect tension (IDT) test of AC. This new procedure uses BBR creep data to generate the mixture relaxation modulus mastercurve by utilizing the Hirsch model, time-temperature superposition principle, and Prony series-based interconversion method. The Hirsch model parameters are calibrated by comparing creep data from BBR and IDT creep tests performed at the same temperature. Boltzmann hereditary integral and second-order heat equation are then used to calculate thermal stress from the developed relaxation modulus mastercurve. IDT strength data is transferred from test strain rate to thermal strain rate using the viscoelastic continuum damage model. Since a strain gauge is not attached for traditional laboratory IDT strength testing, this study derived an analytical equation based on the Hondros solution to compute the horizontal strain rate from the applied vertical displacement rate. Finally, the critical cracking temperature is determined by coupling the thermal stress and strength profiles. Using the procedure presented in this paper, the critical cracking temperatures of four AC mixtures were predicted from BBR and IDT data. Their actual critical cracking temperatures were measured using thermal stress restrained specimen test performed in the laboratory to validate the method. The predicted critical cracking temperatures are found to be very close to the laboratory measured values. The developed procedure has substantial practical and technical importance in predicting the critical cracking temperature of AC because it utilizes widely available BBR and IDT tests.


2021 ◽  
Vol 125 (1) ◽  
Author(s):  
Dmitry Zaytsev ◽  
Elijah N. Borodin ◽  
A. E. Dudorov ◽  
P. Panfilov

AbstractThe mechanical properties of Chelyabinsk LL5 chondrite (Chelyabinsk meteorite) were studied by uniaxial compression and diametral compression/indirect tension test. Twenty cylindrical samples, 10 for compression and 10 for tension, with the diameter 3.3 mm and 1.65 mm in height have been prepared for testing. It was shown that the strength of the tested samples under compression almost 45 times greater than it is at tension: 372 ± 10 MPa and 8.2 ± 0.7 MPa, respectively. Fracture behaviour under compression and tension was similar and can be characterised as brittle. The obtained compression strength of the Chelyabinsk meteorite lies close to the maximal values of strength for many other chondrites, whereas its tensile strength magnitude resides in the bottom quarter of the range of similar measurements. It may be caused by the small sizes of the investigated samples together with a large number of tiny cracks between the grains in the Chelyabinsk chondrite. Our estimations have shown that if one assumes that the initial shape of the Chelyabinsk fireball was spherical or ellipsoidal, then its fragmentation stress is close to the experimental tensile strength and much lower than the compression strength. Hence, a stress state equivalent to one appearing at the indirect tension test could occur in the Chelyabinsk fireball during its fall in the Earth atmosphere.


Author(s):  
Thomas Johnson ◽  
Nura Bala ◽  
Alireza Bayat ◽  
Leila Hashemian

Cracking failure is one of the major distress modes associated with asphalt pavement. Asphalt modification has been identified as an effective method to improve pavement performance. In this study, nanomaterials including bentonite and halloysite nanoclays and nanocellulose are added to PG 64-28 straight run asphalt binder for modification. The potential of these nanomaterials for improving the cracking performance of asphalt pavements at intermediate pavement service temperatures is investigated. Rheological evaluation is conducted using a dynamic shear rheometer (DSR), and the cracking resistance of the asphalt mixtures is determined through indirect tension asphalt cracking test (IDEAL-CT). A high shear mixer is used to disperse the nanomaterial in the asphalt and the field emission scanning electron microscope (FESEM) analysis shows a relatively good dispersion of the nanomaterials. Furthermore, the results of the IDEAL-CT show an improvement in cracking test index by as much as 47% to 114% through nanomaterial modification.


2021 ◽  
Vol 11 (1) ◽  
pp. 461
Author(s):  
Feng Hu ◽  
Zhiqing Li ◽  
Yifan Tian ◽  
Ruilin Hu

Construction operations in cold regions may encounter frozen geomaterials. In construction, it is important to understand the processes by which geomaterials fail under common loading conditions to avoid accidents and work efficiently. In this work, an artificial frozen soil–rock mixture was used for uniaxial compression and indirect tension loading analysis to investigate macroscopic failure patterns and soil–rock interface crack evolution mechanisms. To further understand and compare the meso-mechanical failure mechanisms of the soil–rock interface, we used two types of rock block particles with different surface roughness for fabricating frozen artificial soil–rock mixtures. Acoustic emission (AE), ultrasonic plus velocity (UPV), and digital microscopy were utilized here to obtain the sample deformation response and analyze the morphology of the soil–rock interface. The results were as follows. From the perspective of macroscopic observation, bulging deformations and short tension cracks represent the main failure pattern under compression, and a tortuous tension crack in the center of the disk is the main failure pattern under indirect tension. From the perspective of microscopic observation, the soil–rock interface will evolve into a soil–rock contact band for the sample containing a rough rock block. The strength of the soil–rock contact band is obviously larger than that of the soil–rock interface. Three main failure patterns of the soil–rock interface were observed: a crack path through the accurate soil–rock interface, a crack path through the envelope of the rough rock block, and a crack path passing through the rough rock block. The experimental results could provide a reference for foundation engineering, especially in pile foundation engineering in cold regions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiandong Huang ◽  
Tianhong Duan ◽  
Yuantian Sun ◽  
Lin Wang ◽  
Yawei Lei

DAMs have recently been developed to be used as the damping layer in the so-called antivibration pavement to mitigate the effects of traffic-induced vibration while rare finite element (FE) modeling has been conducted to simulate the indirect tension to cylindrical (IT-CY) specimen test for DAMs. In the present study, the methods for the viscoelastic characterization of DAMs and the techniques to characterize the viscoelastic behavior of DAMs in FE modeling were proposed. The FE model to simulate the IT-CY test was constructed, and it was verified through the corresponding laboratory test. Good agreements were noted between the simulation results and testing results demonstrating that the FE model can provide the accurate prediction of the mechanical behavior of DAMs.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Francesco Lo Monte ◽  
Liberato Ferrara

AbstractWithin the framework of the European Programme Horizon 2020, the Research Project ReSHEALience is currently running with the objective of developing a new approach for the design of structures exposed to extremely aggressive environments, based on Durability Assessment based Design and Life Cycle Analysis. To this aim, new advanced Ultra-High Performance Fibre Reinforced Cementitious Composites with improved durability, called Ultra-High Durability Concretes, are under investigation to characterize their tensile response in both ordinary and very aggressive conditions. In this context, the first step is to develop an effective approach for identifying the main parameters describing the overall behaviour in tension. In the present study, indirect tension tests have been performed via two techniques, based on Double Edge Wedge Splitting and 4-Point Bending Tests. Starting from the test results, a combined experimental-numerical identification procedure has been implemented in order to evaluate the effective material behaviour in direct tension in terms of stress–strain law. In the paper, the mechanical characterization for the reference mix is reported so to describe the identification procedure adopted.


Sign in / Sign up

Export Citation Format

Share Document