Revised Version of the Automobile Level-of-Service Methodology for Urban Streets in the Highway Capacity Manual 2010

Author(s):  
Seckin Ozkul ◽  
Scott S. Washburn ◽  
Douglas S. McLeod
2018 ◽  
Vol 30 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Jelena Kajalić ◽  
Nikola Čelar ◽  
Stamenka Stanković

Level of service (LOS) is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error) is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual), Singapore model and modified BPR (the Bureau of Public Roads) function (Dowling - Skabardonis). The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m) is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km) the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.


2018 ◽  
Vol 47 (4) ◽  
pp. 309-317
Author(s):  
Amit Kumar Das ◽  
Prasanta Kumar Bhuyan

This study is intended to define the Free Flow Speed (FFS) ranges of urban street classes and speed ranges of Level of Service (LOS) categories. In order to accomplish the study FFS data and average travel speed data were collected on five urban road corridors in the city of Mumbai, India. Mid-sized vehicle (car) mounted with Global Positioning System (GPS) device was used for the collection of large number of speed data. Self-Organizing Tree Algorithm (SOTA) clustering method and five cluster validation measures were used to classify the urban streets and LOS categories. The above study divulges that the speed ranges for different LOS categories are lower than that suggested by Highway Capacity Manual (HCM) 2000. Also it has been observed that average travel speed of LOS categories expressed in percentage of free flow speeds closely resembles the percentages mentioned in HCM 2010.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 401-411 ◽  
Author(s):  
Prasanta Kumar Bhuyan ◽  
Smruti Sourava Mohapatra

Defining Level Of Service (LOS) criteria is very important as this is the first step of LOS analysis but this is not well defined in Indian context. The analysis followed in India is basically adaptation of Highway Capacity Manual (HCM 2000) methodology which is more suitable for developed countries having homogenous traffic pattern. An attempt has been made in this study to define LOS criteria of urban streets for developing countries having heterogeneous traffic flow condition. Defining LOS is basically a classification problem and to solve it Affinity Propagation (AP), a very recently developed cluster algorithm is used. Inventory details and the required speed data are collected from five major street corridors of Greater Mumbai Region in India through the application of Trimble GeoXT Global Positioning System (GPS) receiver. Six validation parameters are used on Free Flow Speed (FFS) data to find the optimal number of clusters, which is required for the classification of street segments into number of classes. After that speed data collected during both peak and off-peak hours are averaged over street segments and clustered into six groups to get the speed ranges of different LOS categories. Using validation parameters, considering the physical and surrounding environmental characteristics it is found that street segments can be classified into four classes in Indian context as mentioned in Highway Capacity Manual 2000. However, the FFS range for urban street class IV (urban design category) is significantly lower because of varying road geometric characteristics. The speed ranges of LOS categories under urban street classes are proportionately lower to that values mentioned in HCM 2000 because of highly heterogeneous traffic flow on urban Indian roads. The travel speed data collection procedure using GPS is simple and accurate. In addition, AP clustering is highly efficient in terms of time saving and provides a very accurate solution to classification problems. Hence, both GPS and AP techniques can be applied in other countries to define the speed ranges of LOS categories considering the local conditions.


2017 ◽  
Vol 2615 (1) ◽  
pp. 148-158
Author(s):  
Yinan Zheng ◽  
Michael Armstrong ◽  
Gustavo de Andrade ◽  
Lily Elefteriadou

Procedures detailed in the Highway Capacity Manual 2010 (HCM 2010) estimate capacity and several operational measures dictating level of service for freeway facilities and surface streets. However, these methods do not consider cases in which spillback occurs from one facility type to another. The queuing effects in oversaturated conditions as they propagate upstream onto a freeway main line or a surface street intersection are not accounted for. The objective of this paper is to propose a series of modifications to enhance the HCM 2010 methods to address spillback conditions. These modifications consider lane utilization and lane blockage under spillback conditions and consist of restructuring existing equations and reference tables as well as developing new procedures. A four-regime method is proposed for evaluating spillback effects from urban streets to diverge and weaving segments. In addition, a method is proposed to account for the spillback effects from freeway on-ramps by reducing the effective green time as a proportion of the percent of time that the queue is expected to block the upstream signalized intersection. The framework developed uses assumptions that should be further explored through an extensive, nationwide data collection effort.


Author(s):  
Aidin Massahi ◽  
Mohammed Hadi ◽  
Maria Adriana Cutillo ◽  
Yan Xiao

The effect of incidents on capacity is the most critical parameter in estimating the influence of incidents on network performance. The Highway Capacity Manual 2010 (HCM 2010) provides estimates of the drop in capacity resulting from incidents as a function of the number of blocked lanes and the total number of lanes in the freeway section. However, there is limited information on the effects of incidents on the capacity of urban streets. This study investigated the effects on capacity of the interaction between the drop in capacity below demand at a midblock urban street segment location and upstream and downstream of signalized intersection operations. A model was developed to estimate the drop in capacity at the incident location as a function of the number of blocked lanes, the distance from the downstream intersection, and the green time–to–cycle length (g:C) ratio of the downstream signal. A second model was developed to estimate the reduction in the upstream intersection capacity resulting from the drop in capacity at the midblock incident location as estimated by the first model. The second model estimated the drop in capacity of the upstream links feeding the incident locations as a function of incident duration time, the volume-to-capacity (V/C) ratio at the incident location, and distance from an upstream signalized intersection. The models were developed on the basis of data generated with the use of a microscopic simulation model calibrated by comparison with parameters suggested in HCM 2010 for incident and no-incident conditions and by comparison with field measurements.


2002 ◽  
Vol 1802 (1) ◽  
pp. 105-114 ◽  
Author(s):  
R. Tapio Luttinen

The Highway Capacity Manual (HCM) 2000 provides methods to estimate performance measures and the level of service for different types of traffic facilities. Because neither the input data nor the model parameters are totally accurate, there is an element of uncertainty in the results. An analytical method was used to estimate the uncertainty in the service measures of two-lane highways. The input data and the model parameters were considered as random variables. The propagation of error through the arithmetic operations in the HCM 2000 methodology was estimated. Finally, the uncertainty in the average travel speed and percent time spent following was analyzed, and four approaches were considered to deal with uncertainty in the level of service.


Author(s):  
Mark R. Virkler ◽  
Shashi Gannavaram ◽  
Anand Ramabhadran

The 1994 update of the Highway Capacity Manual (HCM) includes a planning procedure to estimate the capacity condition of a signalized intersection (Xcm). The planning method results can also be extended to a planning application of the more data-intensive HCM operational procedure to estimate intersection critical flow-to-capacity ratio (Xc) and level of service with only planning-level data. Both the planning procedure and the planning application of the operational procedure involve default adjustment factors and synthesized traffic signal timing (called the “default signal timing”). Data from 166 Missouri intersections were used to determine how well the planning approaches predict operational analysis results. In general, the default signal timings had shorter cycle lengths than the timing plans used at pretimed signals. The shorter cycle lengths led to slightly higher flow-to-capacity ratios, since a higher proportion of each cycle was devoted to lost time. The default signal timings also had more equal flow-to-capacity ratios within critical lane groups. The shorter cycle lengths and more equal flow-to-capacity ratios led to a predicted level of service that was the same or better than that calculated for actual conditions. For the subject intersections, locally calibrated default adjustment factors yielded better predictions of flow-to-capacity ratios and level of service than the HCM defaults. The planning value for Xcm was often less than the actual Xc for operational analysis of actual conditions. This was to be expected since Xcm is based on the maximum allowable cycle length. The HCM planning procedure is expected to receive wide use in a variety of planning and design applications. Calibration of appropriate local default values should improve the accuracy of the planning procedure results.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmed I. Z. Mohamed ◽  
Yusheng Ci ◽  
Yiqiu Tan

Mega elliptical roundabout is a new intersection on rural multilane highways. This intersection was developed in a previous paper using simulation data, and the authors found that it is better than interchange (full cloverleaf) in most scenarios of traffic flow. Basically, there are no guidelines or procedures for designing mega elliptical roundabout in AASHTO Green Book, Federal Highway Administration guides, and Highway Capacity Manual. Thus, the purpose of this study is to analyze the traffic operation performance and propose a methodology for calculating the capacity of mega elliptical roundabout and also the level of service by gap acceptance theory. Moreover, this research studied the influence of different values of truck ratios and also different values of a major highway speed on geometric design and traffic operation performance for mega elliptical roundabout. To validate the thoroughness of the proposed methodology, VISSIM simulations were conducted. This research will assist practitioners in determining the appropriate geometric design, assessing mega elliptical roundabout intersections, and making comparisons with other alternatives.


Author(s):  
Ioannis Kaparias ◽  
Rui Wang

Inspired by developments in urban planning, the concept of “shared space” has recently emerged as a way of creating a better public realm. This is achieved through a range of streetscape treatments aimed at asserting the function of streets as places by facilitating pedestrian movement and lowering vehicle traffic volumes and speeds. The characteristics of streets with elements of shared space point to the conjecture that traffic conditions and road user perceptions may be different to those on streets designed according to more conventional principles, and this is likely to have an impact on the quality of service. The aim of this paper is, therefore, to perform an analysis in relation to level of service (LOS) and to investigate how this may change as a result of the implementation of street layouts with elements of shared space. Using video data from the Exhibition Road site in London during periods before and after its conversion from a conventional dual carriageway to a layout featuring several elements of shared space, changes in relation to LOS for both vehicle traffic and pedestrians are investigated, by applying the corresponding methods from the 2010 Highway Capacity Manual. The results suggest that streets with elements of shared space provide a much improved pedestrian experience, as expressed by higher LOS ratings, but without compromising the quality of vehicle traffic flow, which, in fact, also sees slight improvements.


Author(s):  
Ernest O. A. Tufuor ◽  
Laurence R. Rilett

The Highway Capacity Manual 6th edition (HCM6) includes a new methodology to estimate and predict the distribution of average travel times (TTD) for urban streets. The TTD can then be used to estimate travel time reliability (TTR) metrics. Previous research on a 0.5-mi testbed showed statistically significant differences between the HCM6 estimated TTD and the corresponding empirical TTD. The difference in average travel time was 4 s that, while statistically significant, is not important from a practical perspective. More importantly, the TTD variance was underestimated by 70%. In other words, the HCM6 results reflected a more reliable testbed than field measurement. This paper expands the analysis on a longer testbed. It identifies the sources and magnitude of travel time variability that contribute to the HCM6 error. Understanding the potential sources of error, and their quantitative values, are the first steps in improving the HCM6 model to better reflect actual conditions. Empirical Bluetooth travel times were collected on a 1.16-mi testbed in Lincoln, Nebraska. The HCM6 methodology was used to model the testbed, and the estimated TTD by source of travel time variability was compared statistically to the corresponding empirical TTD. It was found that the HCM6 underestimated the TTD variability on the longer testbed by 67%. The demand component, missing variable(s), or both, which were not explicitly considered in the HCM6, were found to be the main source of the error in the HCM6 TTD. A focus on the demand estimators as the first step in improving the HCM6 TTR model was recommended.


Sign in / Sign up

Export Citation Format

Share Document