scholarly journals Screening of the Argentinean INTA peanut core collection with a molecular marker associated with resistance to Sclerotinia minor Jaggar

2020 ◽  
Vol 47 (1) ◽  
pp. 9-16
Author(s):  
K.D. Chamberlin ◽  
J.J. Baldessari ◽  
E.M.C. Mamani ◽  
M.V. Moreno

ABSTRACT Cultivated peanut, the third most important oilseed in the world, is consistently threatened by various diseases and pests. Sclerotinia minor Jagger (S. minor), the causal agent of Sclerotinia blight, is a major threat to peanut production in many countries and can reduce yield by up to 50% in severely infested fields. Host plant resistance will provide the most effective solution to managing Sclerotinia blight, but limited sources of resistance to the disease are available for use in breeding programs. Peanut germplasm collections are available for exploration and identification of new sources of resistance, but traditionally the process is lengthy, requiring years of field testing before those potential sources can be identified. Molecular markers associated with phenotypic traits can speed up the screening of germplasm accessions. The objective of this study was to genotype the peanut core collection of the Instituto Nacional de Tecnología Agropecuaria (INTA) Manfredi, Argentina, with a molecular marker associated with Sclerotinia blight resistance. One hundred and fifty-four (154) accessions from the collection were available and genotyped using the Simple Sequence Repeat (SSR) marker. Accessions from each botanical variety type represented in the core collection were identified as new potential sources of resistance and targeted for further evaluation in field tests for Sclerotinia blight resistance.

2014 ◽  
Vol 41 (1) ◽  
pp. 42-49 ◽  
Author(s):  
K. D. Chamberlin

ABSTRACT Cultivated peanut, the second most economically important legume crop throughout the United States and the third most important oilseed in the world, is consistently threatened by various diseases and pests. Sclerotinia minor Jagger (S. minor), the causal agent of Sclerotinia blight, is a major threat to peanut production in the Southwestern U.S., Virginia, and North Carolina and can reduce yield by up to 50% in severely infested fields. Although host plant resistance would provide the most effective solution to managing Sclerotinia blight, limited sources of resistance to the disease are available for use in breeding programs. Peanut germplasm collections are available for exploration and identification of new sources of resistance, but traditionally the process is lengthy, requiring years of field testing before those potential sources can be identified. Molecular markers associated with phenotypic traits can speed up the screening of germplasm accessions. The objective of this study was to characterize the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) mini-core collection with regards to a molecular marker associated with Sclerotinia blight resistance. One hundred twenty-four (124) accessions from the collection were available and genotyped using the SSR marker and 67 were identified as potential new sources of resistance and targeted for further evaluation in field tests for Sclerotinia blight resistance.


2010 ◽  
Vol 37 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. P. Damicone ◽  
C. C. Holbrook ◽  
D. L. Smith ◽  
H. A. Melouk ◽  
K. D. Chamberlin

Abstract In 2001, entries from the peanut core collection, a subset of the USDA peanut germplasm collection, were planted in non-replicated plots in a field with a history of Sclerotinia blight caused by Sclerotinia minor. Variability existed among entries for reaction to Sclerotinia blight. Of the 744 entries evaluated, 11% had no disease, nearly 30% had <10% disease incidence, and only 21% had 50% disease incidence or more. Most of the resistant entries had an upright growth habit and were in early and mid-maturity groups. Many of the early maturing entries were susceptible to the foliar disease pepper spot which occurred throughout the study. Entries were selected for further evaluation in replicated plots based on a nil to low (<10%) incidence of Sclerotinia blight, adaptation and/or vigor, and other desirable characteristics such as an intermediate to prostrate growth habit and pepper spot resistance. Selected entries were retested in both 2002 and 2003 (n  =  62) and compared to resistant (Tamspan 90), moderately resistant (Tamrun 96), and susceptible (Okrun) reference cultivars. Most entries (55 in 2001 and 46 in 2003) had disease incidence less than Tamrun 96 and similar to Tamspan 90. In 2003 when disease incidence was highest, all 46 entries with resistant reactions similar to that of Tamspan 90 had erect plant growth habits except for entries 208 and 582 which were prostrate, and entries 273, 128, and 804 which were intermediate. Resistance to Sclerotinia blight and yield similar to Tamspan 90, plant habit, and/or reactions to pepper spot and web blotch were used to select the best entries. Entries 208, 128, 804, 582, and 273 combined resistance to Sclerotinia blight, pepper spot, and web blotch with less than erect growth habits. Entry 103 had good Sclerotinia blight resistance and yield, but an upright growth habit. Entry 92 had an upright growth habit and low yield, but good Sclerotinia blight resistance. Entries 92 and 103 had upright growth habits but were among the best entries for resistant to pepper spot and web blotch. Entries 426, 184, and 562 were upright and susceptible to pepper spot, but had resistance to web blotch and the best resistance to Sclerotinia blight. These entries appear to be useful sources of resistance to Sclerotinia blight for breeding programs and for increasing the probability of finding additional sources of resistance in clusters of germplasm identified within the entire USDA collection.


2014 ◽  
Vol 41 (1) ◽  
pp. 17-24 ◽  
Author(s):  
S. P. Tallury ◽  
J. E. Hollowell ◽  
T. G. Isleib ◽  
H. T. Stalker

ABSTRACT Wild Arachis species from section Arachis have been promoted as sources of resistance to common peanut diseases and insect pests. The objective of our study was to identify wild Arachis species with resistance to Sclerotinia blight and Cylindrocladium black rot (CBR). One hundred and ten accessions/entries from 23 Arachis species including A. hypogaea were evaluated in the greenhouses at North Carolina State University between January and March of 2010 in a 11×10 rectangular lattice experimental design with 4 replications for Sclerotinia blight and 6 replications for CBR. For the Sclerotinia blight test, seeds were planted in 10 cm clay pots and 8-wk-old plants were inoculated in a mist chamber with BEEM capsules containing the fungus inserted on the petioles of the 4th leaf from the apex on the primary branch. Lesion lengths were measured 4, 5, 6, and 7 d after inoculation, and areas under the disease progress curves (AUDPC) were calculated. For the CBR test, seeds were planted in soil mixed with microsclerotia (25/g) in cone-tainers partly immersed in water. Root damage was recorded after 60 d on a 0–5 proportional scale (0 = no decay to 5 = completely decayed). Data analysis indicated significant (p<0.05) variation among and within Arachis species for both diseases. Arachis glandulifera exhibited the highest level of Sclerotinia blight resistance followed by A. correntina, A. herzogii, and A. helodes, although the last three species were not significantly different from A. hypogaea. Overall, low genetic variability for Sclerotinia blight resistance was observed among the wild species accessions. For CBR, A. valida, A. cruziana, A. microsperma, A. williamsii, A. kempff-mercadoi, A. kuhlmannii, A. helodes, A. cardenasii and A. correntina formed the most resistant group with A. hypogaea in the most susceptible group. Overall, significant genetic variability for CBR resistance was found among the different wild species accessions. However, not all accessions within a species were resistant to either disease, and most accessions that were resistant to one disease were susceptible to the other.


2018 ◽  
Vol 45 (1) ◽  
pp. 12-18 ◽  
Author(s):  
Kelly D. Chamberlin ◽  
Naveen Puppala

ABSTRACT Cultivated peanut, the second most economically important legume crop throughout the United States and the third most important oilseed in the world, is consistently threatened by various diseases and pests. Sclerotinia blight, (causal agents Sclerotinia sclerotiorum (S. sclerotiorum) and Sclerotinia minor Jagger (S. minor))is a major threat to peanut production in the Southwestern U.S., Virginia, and North Carolina and can reduce yield by up to 50% in severely infested fields. S. sclerotiorum has now been reported in areas of eastern New Mexico and west Texas where all U.S. grown Valencia peanuts are produced, commonly in organic cropping environments. Host plant resistance provides the most effective solution to managing Sclerotinia blight, especially in organic systems where pesticide use is not an option for disease control. To date, no Valencia cultivars with Sclerotinia blight resistance have been released. In this study, the Valencia peanut core germplasm collection was genotyped with a Simple Sequence Repeat (SSR) marker associated with Sclerotinia blight resistance in order to identify potential germplasm for use in breeding to develop Valencia peanut cultivars resistant to the disease. Thirty accessions from the Valencia peanut core collection have profiles consistent with other genotypes that exhibit less that 5% incidence of Sclerotinia blight under heavy disease pressure. The identified accessions, after field evaluation, may serve as potential sources of Sclerotinia blight resistance in Valencia peanut breeding programs.


Crop Science ◽  
2018 ◽  
Vol 58 (3) ◽  
pp. 1306-1317 ◽  
Author(s):  
Rebecca S. Bennett ◽  
Kelly D. Chamberlin ◽  
John P. Damicone

Euphytica ◽  
2009 ◽  
Vol 172 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Kelly D. Chenault Chamberlin ◽  
Hassan A. Melouk ◽  
Mark E. Payton

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534b-534
Author(s):  
James D. McCreight

Yellowing of melon (Cucumis melo L.) incited by lettuce infectious yellows virus (LIYV) reduces yield and fruit quality of infected plants. LIYV is transmitted only by the sweetpotato whitefly (Bemisia tabaci Genn.). Two naturally infected field tests indicated several potential sources of resistance to LIYV. PI 124112 and `Snake Melon' had mild symptoms in both field tests whereas PI 313970 was asymptomatic in the test in which it was included. In greenhouse tests using controlled inoculation, PI 313970 was asymptomatic, had negative ELISA assays for LIYV, and was negative for LIYV in serial transfers to Chenopodium. `Top Mark' and `PMR 5' were symptomatic, had positive ELISA assays for LIYV, and were positive for LIYV in serial transfers to Chenopodium in these greenhouse tests. Limited data indicate that resistance in PI 313970 is conditioned by a single, dominant gene.


Author(s):  
Kayla L. Riegner ◽  
Kelly S. Steelman

Degraded visual environments (DVEs) pose significant safety and efficiency problems in military ground vehicle operations. As part of a larger research program, two field tests were conducted to evaluate driving aids while indirect driving in DVEs. The current paper presents the results of one of these field tests, and focuses on the challenges and lessons learned in designing a challenging test course and producing consistent dust clouds for assessing Soldier driving performance and workload in degraded visual environments.


Sign in / Sign up

Export Citation Format

Share Document