scholarly journals Computational contact mechanics for a medium consisting of functionally graded material coating and orthotropic substrate

2021 ◽  
Vol 4 (4) ◽  
pp. 249-266
Author(s):  
Erdal Öner

This paper presents a semi-analytical method to investigate the frictionless contact mechanics between a functionally graded material (FGM) coating and an orthotropic substrate when the system is indented by a rigid flat punch. From the bottom, the orthotropic substrate is completely bonded to the rigid foundation. The body force of the orthotropic substrate is ignored in the solution, while the body force of the FGM coating is considered. An exponential function is used to define the smooth variation of the shear modulus and density of the FGM coating, and the variation of Poisson’s ratio is assumed to be negligible. The partial differential equation system for the FGM coating and the orthotropic substrate is solved analytically through Fourier transformations. After applying boundary and interface continuity conditions to the mixed boundary value problem, the contact problem is reduced to a singular integral equation. The Gauss–Chebyshev integration method is then used to convert the singular integral equation into a system of linear equations, which are solved using an appropriate iterative algorithm to calculate the contact stress under the rigid flat punch. The parametric analyses presented here demonstrate the effects of normalized punch length, material inhomogeneity, dimensionless press force, and orthotropic material type on contact stresses at interfaces, critical load factor, and initial separation distance between FGM coating and orthotropic substrate. The developed solution procedures are verified through the comparisons made to the results available in the literature. The solution methodology and numerical results presented in this paper can provide some useful guidelines for improving the design of multibody indentation systems using FGMs and anisotropic materials.

2007 ◽  
Vol 04 (03) ◽  
pp. 475-492 ◽  
Author(s):  
Y. Z. CHEN ◽  
X. Y. LIN

In this paper, elastic analysis for a Yoffe moving crack problem in antiplane elasticity of the functionally graded materials (FGMs) is presented. The crack is assumed to move with a constant velocity V. The traction applied on the crack face is arbitrary. The Fourier transform method is used to derive an elementary solution. Furthermore, using the obtained elementary solution a singular integral equation for the problem is obtained. After the singular integral equation is solved, the stress intensity factor (SIF) can be evaluated immediately. In the case of evaluating the SIFs at the leading crack tip and the trailing crack tip, the difference between the two cases is investigated. From the numerical solution of the SIFs, the influence caused by the velocity V and the FGM material property β1 are addressed. It is found that when the FGM material property β1 = 0, i.e. the homogeneous case, the SIFs at the crack tips do not depend on the moving velocity of the crack. Finally, numerical examples are given.


Author(s):  
B. V. Sobol ◽  
E. V. Rashidova ◽  
P. V. Vasiliev ◽  
A. I. Novikova

Objective. In this paper, the authors study problems of a plane strain of elastic bodies containing internal rectilinear fractures. In each case, the margins of the considered areas are supported by thin flexible coatings. The first part of the paper is devoted to the problem of an infinite elastic wedge, the faces of which are free from the outside and reinforced with a thin flexible material, and the bisector contains a rectilinear fracture with regular forces applied to the margins, and to the study of the stress concentration at the fracture vertices. In the second part of the paper, the authors consider the problem of an equilibrium radial internal fracture in the cross-section of a round pipe. The inner surface of the pipe experiences hydrostatic pressure; the outer surface is reinforced with a thin flexible coating. The purpose of the study in each of the presented tasks is to determine the values of the influence factor. Methods. Both problems are united by a single approach, in which the presence of a coating is modeled mathematically, using special marginal conditions obtained based on an asymptotic analysis of the exact solution for a strip or ring flexible coating of small relative thickness. In the first issue, the singular integral equation is derived using the Mellin transform, which allows proceeding to the solution of a system of ordinary differential equations and obtaining a singular integral equation relative to the derivative of the discontinuity function of the first kind with a Cauchy kernel. In the second issue, discontinuous solutions are constructed using the Fourier series, resulting in a singular integral equation of a similar structure. Previously, similar ideas were successfully implemented by the authors in the study of the problem of the equilibrium state of a strip with a coating weakened by an internal transverse fracture under arbitrary conditions on the lower edge of the strip. Conclusion. Singular integral equations for the considered problems are obtained. The collocation method is used to construct solutions of singular integral equations for various combinations of geometric and physical characteristics of issues. In all the considered cases, the values of the influence factor were calculated. The analysis of changes in the influence factor depending on various combinations of geometric parameters and mechanical characteristics of problems is carried out. It is noted that with increasing rigidity of the coating and increasing its thickness, the values of the influence factor decrease; the increase in the value of the influence factor is provided by approaching the fracture to the body margin and increasing its relative length.


Sign in / Sign up

Export Citation Format

Share Document