IMPLEMENTASI ALGORITMA NAÏVE BAYES CLASSIFIER DAN CONFUSION MATRIX DALAM ANALISIS SENTIMEN TERHADAP PELAYANAN TRANSPORTASI UMUM SELAMA PANDEMI COVID-19 PADA MEDIA SOSIAL TWITTER
Pandemi COVID-19 memberikan dampak diberbagai aspek. Salah satu yang terkena dampak adalah transportasi umum. Transportasi umum mengalami penurunan jumlah penumpang yang signifikan, seperti Transjakarta sebesar 34,52%, MRT 94,11% dan KRL 78,69%. Penurunan ini disebabkan oleh kebijakan yang dikeluarkan untuk mendukung upaya pemerintah dalam pencegahan penyebaran virus Covid-19, seperti memangkas jam operasional, mengurangi perjalanan yang akan dijadwalkan sampai pembatasan penumpang setiap gerbong. Kebijakan ini memicu opini penumpang mengenai pelayanan yang diberikan. Opini tersebut dapat dituangkan melalui berbagai media salah satunya Twitter. Opini penumpang yang tertuang didalam twitter mengenai pelayanan transportasi umum dapat bersifat positif atau pun negatif. Opini penumpang dapat digunakan sebagai data dalam melakukan analisis sentimen, data ini dapat diperoleh dengan menggunakan teknik crawling. Analisis sentimen dilakukan untuk mengetahui kecenderungan opini penumpang mengenai pelayanan transportasi umum selama pandemi Covid-19. Data yang didapatkan sebanyak 650 data yang diberikan label positif dan negatif. Data dibagi menjadi data latih sebanyak 60 % atau 390 data, dan data uji 40% atau 260 data. Data ini dapat digunakan untuk proses pembuatan model mechine learning menggunakan Metode algoritma Naïve Bayes Classifier. Hasil pembentukan model mechine learning ini memiliki tingkat akurasi sebesar 83,8% yang dihasilkan dari pengujian data uji dengan menggunakan confusion matrix.