A METHOD OF LIMITING THE INFLOW OF BOTTOM WATER IN OIL WELLS

2017 ◽  
pp. 67-71 ◽  
Author(s):  
D. S. Leontiev ◽  
I. I. Kleshchenko ◽  
A. K. Yagafarov ◽  
A. V. Kustyshev ◽  
N. A. Sipina ◽  
...  

The paper describes the method of isolation of bottom water inflow in oil wells. The method of isolation of inflow of formation water in the well, watered by water cone flowing into the near-wellbore area, is drilling is carried out from the main borehole of the stopped well into the productive formation with water intrusion into radial offshoots along the radiusbelow of the well perforation interval. They pump the waterproofing composition into referred radial offshoots with the creation of the waterproofing screen along the radius of the main wellbore. They leave the well for a period of reaction of composition injected under pressure and perform a subsequent well completion through existing perforations of the perforated interval.

2004 ◽  
Vol 126 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Andrew K. Wojtanowicz ◽  
Miguel Armenta

Water inflow to petroleum wells hampers production of oil or gas leading to early shut downs of the wells without sufficient recovery of hydrocarbons in place. Downhole water sink (DWS) is a completion/production technique for producing water-free hydrocarbons with minimum amount of water from reservoirs with bottom water drive and strong tendency to water coning. DWS eliminates water invasion to hydrocarbon production by employing hydrodynamic mechanism of coning control in situ at the oil-water or gas-water contact. The mechanism is based upon a localized water drainage generated by another well completion (downhole water sink) installed in the aquifer beneath the oil/water or gas/water contact. The paper summarizes the development and state-of-the-art of DWS technology. Presented are results from theoretical studies, physical and numerical experiments, and field projects to date. It is demonstrated that DWS could increase recovery and control water production in vertical and horizontal oil wells—with natural flow, downhole pumps or gas lift, and in the gas wells producing from low-pressure tight gas reservoirs. To date, DWS has been used in reservoirs with bottom water. Moreover, in principle, the technology might also be used in the dipping reservoir structures with encroaching side-water.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Yongsheng Tan ◽  
Haitao Li ◽  
Xiang Zhou ◽  
Beibei Jiang ◽  
Yongqing Wang ◽  
...  

Numerical simulation and prediction studies on horizontal well performances in gas reservoir are foundation for optimizing horizontal well completion process. To gain more understanding on this theory, a steady-state reservoir model coupling with wellbore is developed in the fractured gas reservoirs with bottom-water and different fracture intensities to predict the horizontal well performances. Based on the equivalent flow assumption, the fractured porous medium is transformed into anisotropic porous medium so that the gas reservoir flow model can be developed as a new model that incorporates formation permeability heterogeneity, reservoir anisotropy, and gas reservoir damage. The wellbore flow model which considers pressure drops in the tubing is applied. We compare this paper model solutions for inflow profile along the well to the numerical solutions obtained from a commercial simulator (ECLIPSE 2011), and the result shows a very good agreement. Moreover, sensitive analysis, in terms of various linear densities of fractures, matrix permeability, fracture width, and wellbore pressure drop, is implemented. The results show that the new model developed in this study can obtain a more practical representation to simulate the horizontal wells performance in fractured gas reservoir with different fracture intensities and bottom-water, thus can be used to optimize the parameters in horizontal well completion of fractured gas reservoirs with different fracture intensities and bottom-water.


2019 ◽  
Vol 15 (3) ◽  
pp. 1171-1186 ◽  
Author(s):  
Flor Vermassen ◽  
Nanna Andreasen ◽  
David J. Wangner ◽  
Nicolas Thibault ◽  
Marit-Solveig Seidenkrantz ◽  
...  

Abstract. The mass loss from the Greenland Ice Sheet has increased over the past 2 decades. Marine-terminating glaciers contribute significantly to this mass loss due to increased melting and ice discharge. Periods of rapid retreat of these tidewater glaciers have been linked to the concurrent inflow of warm Atlantic-sourced waters. However, little is known about the variability of these Atlantic-derived waters within the fjords, due to a lack of multi-annual in situ measurements. Thus, to better understand the potential role of ocean warming on glacier retreat, reconstructions that characterize the variability of Atlantic water inflow to the fjords are required. Here, we investigate foraminiferal assemblages in a sediment core from Upernavik Fjord, West Greenland, in which the major ice stream Upernavik Isstrøm terminates. We conclude that the foraminiferal assemblage is predominantly controlled by changes in bottom water composition and provide a reconstruction of Atlantic water inflow to Upernavik Fjord, spanning the period 1925–2012. This reconstruction reveals peak Atlantic water influx during the 1930s and again after 2000, a pattern that is comparable to the Atlantic Multidecadal Oscillation (AMO). The comparison of these results to historical observations of front positions of Upernavik Isstrøm reveals that inflow of warm Atlantic-derived waters likely contributed to high retreat rates in the 1930s and after 2000. However, moderate retreat rates of Upernavik Isstrøm also prevailed in the 1960s and 1970s, showing that glacier retreat continued despite a reduced Atlantic water inflow, albeit at a lower rate. Considering the link between bottom water variability and the AMO in Upernavik Fjord, and the fact that a persistent negative phase of the AMO is expected for the next decade, Atlantic water inflow into the fjord may decrease in the coming decade, potentially minimizing or stabilizing the retreat of Upernavik Isstrøm during this time interval.


Author(s):  
Jessica Buckley ◽  
Ming Z. Huang

Straight-line motion, albeit simple, manifest itself in numerous applications, from running steam engines and oil wells to manufacturing parts with straight edges and sides. The drive to maximize production creates a need for continuously running assembly-line manufacturing comprised of precise, individually optimized components. While there are many so-called straight-line generating mechanisms, few actually produce a true straight-line, most generate only approximate straight-line. Featured an eight-link rhomboidal system with length constraints, the Peaucellier mechanism is one that actually produces a true straight line intrinsically. This paper presents a study on the dimension synthesis of the Peaucellier mechanism, namely by identifying the correct ratio of linkage lengths to produce the longest straight line stroke. In addition to designing for stroke, another objective of interest is to attain a desired velocity profile along the path. Kinematic analysis of the velocity profile on the mechanism will render the creation of input angular velocity standards based on desired stroke speed. Given the stroke and velocity specifications, specific steps to size the dimensions of the mechanism developed as result of this study will be presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Haidong Wang ◽  
Yikun Liu

The horizontal well completion with stinger is usually used to control the bottom water cone. Although the pressure profile and the inflow profile along the horizontal wellbore can be divided into two parts by the stinger, these profiles have not really flattened. In order to flatten the pressure distribution and inflow distribution further, it proposes a new technology. This new horizontal well has multiple artificial bottom holes (MABH) along the wellbore and it has application potential. In order to verify the effectiveness of MABH technology, a model of horizontal well completion with MABH was established, and the production performance of different water cone control technologies was analyzed: conventional horizontal well, stinger completion horizontal well, and MABH completion horizontal well. The results show that the MABH technology has more advantages than the stinger technology. The uniformity of pressure distribution of the 6-MABH horizontal well is 55% higher than that of the horizontal well with string technology, and the uniformity of inflow distribution is increased by 65.25%. At the same time, although the operation of MABH technology is very simple, it should follow a rule of MABH installation: the position of the first MABH should be set at 242.5 m from the heel hole of the horizontal wellbore, and the other interval is 92.4 m.


Sign in / Sign up

Export Citation Format

Share Document