water inflow
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 145)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
I. G. Fattakhov ◽  
◽  
L. S. Kuleshova ◽  
Sh. Kh. Sultanov ◽  
V. V. Mukhametshin ◽  
...  

Increasing the efficiency of water shut-off works is one of the important tasks for the sustainable well operation. The article discusses the use of various plugging compositions for water inflow into a well isolating, their advantages and disadvantages, conditions of use, and presents the results of a study of the proposed composition. The composition of an aqueous solution of polyaluminium chloride and a suspension of gypsum anhydrite is considered. The composition contains 45-55 mass percent of 15-25 percent aqueous solution of polyaluminium chloride and 45-55 mass percent suspension of gypsum anhydrite at a water-solid ratio of 0.9. The technical result is an increase in the efficiency of water inflow into the well isolating by obtaining a homogeneous, dense plugging mass formed by mixing the components of the composition and gaining maximum strength over time. Keywords: well; water cut; isolation; water inflow; plugging mass; bottomhole formation zone; oil production; polyaluminium chloride; anhydrite.


2021 ◽  
Vol 6 (4) ◽  
pp. 24-33
Author(s):  
Rashad Abilov ◽  

Introduction: The rate of urbanization is currently high. Therefore, it is important to use various elements and devices for water intake and water supply. Purpose of the study: We aimed to consider and analyze the structural features of a water intake facility for mountain and submountain rivers. Methods: In the course of the study, we used the synergistic research principle and statistical analysis. We analyzed the types of water supply networks at mountain rivers and identified the features of water intakes at water sources of this type. Results: A description of water intake features under flood conditions in the Amur Region, exemplified by the Bureya River, was obtained. The mountain rivers have an uneven runoff, which fluctuates not only throughout the year but also throughout the day. The water supply of the mountain and submountain areas shapes the idea of hydrological control over the regime of the mountain rivers. This paper will help to study changes in the average water inflow over the years and thus facilitate an accurate and detailed description of the water inflow characteristics in the Bureya reservoir when planning the water-energy modes of the hydroelectric power plant.


2021 ◽  
Vol 11 (24) ◽  
pp. 11956
Author(s):  
Yonghong Wang ◽  
Jiabin Li ◽  
Chuan Wang ◽  
Qin He

The water in the rock medium is exchanged with the confined aquifer through the fracture, which leads to the water inflow line in the confined aquifer is no longer horizontal. This paper assumes that the aquifuge is a kind of semi-isolation layer, while the first-order derivative of the total head slope line function within the influence of precipitation approaches the slope of the line connecting the top plate of the aquifuge with the spherical center. This hypothesis demonstrates the relationship between the bottom of the well water inflow and the complete well gushing water. Laplace’s equation for the spherical coordinate transformation is used to find the analytical solution of the water inflow for stable flow. The calculation results are in line with reality through actual engineering and numerical simulation methods. The current numerical simulation methods and theoretical methods mostly consider the aquifer in the ideal state, which is difficult to simulate the fractured rock mass. The theoretical formula proposed in this paper can more effectively reflect the actual seepage situation of fractured rock mass than other formulas. In addition, the combination of theoretical derivation, numerical simulation and field measurement can predict the water inflow more accurately than unilateral research. At the same time, for the question of whether the face excavation is grouted or not, this paper using the subjective and objective assignment weight method combined with analytic hierarchy process method and entropy-weight method to take the weight calculation and giving a slurry excavation judgment method based on the proposed formula. Theoretical support is given for the selection of permeability coefficients for each hole in the overrun exploration and this method is validated by different projects, which has some degree of reference value.


2021 ◽  
Vol 15 (4) ◽  
pp. 8-14
Author(s):  
Oleksandr Krykovskyi ◽  
Viktoriia Krykovska ◽  
Serhii Skipochka

Purpose is to analyze changes in shape and dimensions of a rock mass area, fortified with the help of a polymer, depending upon the density of injection rock bolts as well as the value of initial permeability of enclosing rocks to substantiate optimum process solutions to support roofs within the unstable rocks and protect mine workings against water inflow and gas emission. Methods. Numerical modeling method for coupled processes of rock mass strain and filtration of liquid components of a polymer has been applied. The model is based upon fundamental ideas of mechanics of solids and filtration theory. The problem has been solved using a finite element method. Its solution took into consideration both the initial permeability and the permeability stipulated by mine working driving, injection time of reagents and their polymerization, and effect of po-lymer foaming in the process of mixing of its components. Changes in physicomechanical and filtration characteristics of rock mass during polymer hardening were simulated. It has been taken into consideration that a metal delivery pipe starts operating as a reinforcing support element only after the polymer hardening. Findings. If three and five injection rock bolts are installed within a mine working section then stresses, permeability coefficients, pressure of liquid polymeric composition, and geometry of the fortified area of rock mass have been calculated. It has been shown that rock bolt location is quite important to form a rock-bolt arch. It has been demonstrated for the assumed conditions that if five injection rock bolts are installed within the mine working roof then close interaction between rock-bolt supports takes place; moreover, the integral arch is formed within the mine working roof. Originality. Dependence of change in the polymer reinforced area upon a value of initial permeability of enclosing rocks has been derived. It has been shown that in terms of low values of initial permeability, geometry of rock-bolt supports as well as its size is identified only by means of a value of the unloaded zone around the mine working. In this context, initial permeabi-lity increase results in the enlarged diameter of the reinforced rock mass area in the neighbourhood of the injection rock bolt. Practical implications. The findings are recommended to be applied while improving a method to support the mine working roof and decrease water inflow as well as gas emission from the rocks, being undermined, into the working.


Author(s):  
Shweta Ashok Vispute

Abstract: This project gives an outline for the development of an information system based on the existing systems with the utilization of some sensors and IOT. The cradle of this project is based on methodology of IOT. Water level in a dam needs to be maintained effectively to avoid complications. The quantity of water released is hardly ever correct resulting in wastage of water and it is impossible for a man to precisely control the gates without knowledge of exact water level and water inflow rate. We have developed a mechatronics based system. We have designed a system in which real time things are interconnected to web. Water level contactless Ultrasonic sensor is placed in tub connected through Arduino UNO to serve the same purpose automatically and forward the status to it. This system detects the level of water and estimate the water inflow rate in a tub and thereby control the Solenoid valve using IOT in a real-time basis. The water level is analysed using this sensor and updated in the web server using IOT module connected to the Arduino UNO. Arduino unit checks that input and upload the status of water level on web. Keywords: IOT (Internet of Things), Mechatronics, Ultrasonic sensor, Arduino UNO, Solenoid valve.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Jianlin Li ◽  
Luyang Wang ◽  
Xinyi Wang ◽  
Peiqiang Gao

AbstractArtificial neural network (ANN) provides a new way for mine water inflow prediction. However, the effectiveness of prediction using ANN model would not be guaranteed if the influencing factors of water inflow are difficult to quantify or there are only a few observation data. Chaos theory can recover the rich dynamic information hidden in time series. By reconstructing water inflow time series in phase space, the multi-dimensional matrix could be obtained, with each column representing an influencing factor of water inflow and its value representing the change of the influencing factor with time. Therefore, a new prediction model of mine water inflow can be established by combining ANN with chaos theory when lacking data on the influencing factors of water inflow. In the present study, the No. 12 coal mine of Pingdingshan China was selected as the study site. The Chaos-GRNN model and Chaos- BPNN model of mine, water inflow were established by using the water inflow data from February 1976 to December 2013. The model was verified by using the water inflow values in the 24 months from 2014 to 2015. The number embedded dimension (M) of influencing factors of water inflow determined by phase space reconstruction was 7, meaning that there were 7 influencing factors of water inflow and 7 neurons in GRNN input layer, and the time delay was 13 months. The value of GRNN input layer neurons was determined accordingly. The maximum Lyapunov index was 0.0530, and the prediction time of GRNN was 19 months. The two models were evaluated by using four evaluation indices (R, RMSE, MAPE, NSE) and violin plot. It was found that both models can realize the long-term prediction of water inflow, and the prediction effectiveness of Chaos-GRNN model is better than that of Chaos-BPNN model.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3124
Author(s):  
Marzia Ciampittiello ◽  
Claudia Dresti ◽  
Helmi Saidi

Water availability is a crucial factor for the hydrological balance of sub-alpine shallow lakes and for their ecosystems. This is the first study on water balance and water management of Lake Candia, a small sub-alpine, shallow morainic lake. The aims of this paper are to better understand the link between surface water and groundwater. The analyses carried out included: (i) evaluation of water balance, (ii) identification of trends for each component of water balance, (iii) detection of the presence of a break point or change in the behavior of each component, and (iv) regression analyses of the terms of hydrological balance and their relative importance. The analyses revealed a high variability mainly regarding the groundwater component, and very good correlation between rainfall and volume variation, between rainfall and the water inflow, and between groundwater source and outflow. Volume variation is linked with rainfall, outflow, groundwater source, and surface water inflow. Despite the fact that the groundwater component does not seem to have a great importance relative to direct rainfall on the lake, it is necessary to study the component with careful resource management policies that point toward the protection of the water resource, sustainable uses, and protection of the Lake Candia ecosystem.


2021 ◽  
Author(s):  
Pavel Matrenin ◽  
Murodbek Safaraliev ◽  
Stepan Dmitriev ◽  
Sergey Kokin ◽  
Bahtiyor Eshchanov ◽  
...  

2021 ◽  
Vol 67 (3) ◽  
pp. 293-309
Author(s):  
M. R. Kuznetsova ◽  
G. V. Priakhina ◽  
S. D. Grigoreva ◽  
E. R. Kiniabaeva

The study aims to identify formation factors of water inflow to the Antarctic lakes of the Larsemann Hills oasis (East Antarctica). The objects of study are 11 lakes of the oasis. The analysis was performed based on the expeditionary data of the Russian Antarctic Expedition (RAE): 63rd season (23 December 2017 – 3 February 2018), 64th season (12 January 2019 – 27 February 2019), 65th season (2 November 2019 – 24 March 2020). Data of lakes water level observations, aerial photography of the unmanned aerial vehicle (UAV) and route surveys are given, the results of identifying the boundaries of the lakes catchments are presented. The factors that determine the formation of water inflow to the lakes in this region were identified based on the analysis of the materials. The most significant are the meteorological conditions, the presence of perennial snowfields and glacial areas in the catchments, and the presence of lakes that can cause outburst flood. The seasonally thawed layer also has an impact on the formation of the inflow to the lakes. The vegetation cover is not so important for inflow formation in this region due to the physical and geographical conditions. As for anthropogenic activity, it mainly affects the environmental situation of the catchments and water quality, while the anthropogenic influence on the formation of water inflow to the lakes in the oasis is limited to the territories of polar stations. The factors identified should be taken into account in the further study of hydrological processes, the creation of models that describe them, and the organization of field observations.


Sign in / Sign up

Export Citation Format

Share Document