scholarly journals Effects of Monensin and Dietary Soybean Oil on Milk Fat Percentage and Milk Fatty Acid Profile in Lactating Dairy Cows

2008 ◽  
Vol 91 (3) ◽  
pp. 1166-1174 ◽  
Author(s):  
O. AlZahal ◽  
N.E. Odongo ◽  
T. Mutsvangwa ◽  
M.M. Or-Rashid ◽  
T.F. Duffield ◽  
...  
2019 ◽  
Vol 102 (2) ◽  
pp. 1274-1280 ◽  
Author(s):  
John Doelman ◽  
Leslie L. McKnight ◽  
Michelle Carson ◽  
Kelly Nichols ◽  
Douglas F. Waterman ◽  
...  

2013 ◽  
Vol 14 (2) ◽  
pp. 322-335
Author(s):  
Jose Esler de Freitas Júnior ◽  
Francisco Palma Rennó ◽  
Jefferson Rodrigues Gandra ◽  
Luciana Navajás Rennó ◽  
Gustavo Henrique Rodrigues ◽  
...  

The objective was to evaluate the effect of unsaturated fatty acid sources supplementation on nutrients balances and milk fatty acid profile of mid lactation dairy cows. Twelve Brazilian Holstein cows in the mid lactation (mean of 128 days) and (580 ± 20kg of weight; mean ± SD) with milk yield of 25kg/d were assigned randomly into three 4 x 4 Latin square, fed the following diets: control (C); refined soybean oil; (SO); whole soybean raw (WS) and; calcium salts of unsaturated fatty acids (CSFA). Milk yield was 26.6; 26.4; 24.1 and 25.7 to the diets CO, SO, WS and CSFA respectively. Cows fed the WS treatment produced less milk (1.95kg/d of milk), fat and lactose than did cows fed the SO and CSFA. Cows fed the CSFA treatment showed less blood, urine (g/d) concentrations of N more energetic efficiency and intake of energy than did cows fed the SO treatment. Cows fed the unsaturated fatty acids sources showed more C18:2 cis-9, trans-11 CLA and trans-C18:1 FA concentration in milk than did cows fed the CO treatment. Diets with whole soybeans and soybeans oil provide more efficient digestive processes, and increase milk composition of unsaturated fatty acids.


2019 ◽  
Vol 102 (6) ◽  
pp. 5054-5065 ◽  
Author(s):  
Júlia A. Marques ◽  
Tiago A. Del Valle ◽  
Lucas G. Ghizzi ◽  
Elissandra M.C. Zilio ◽  
Larissa S. Gheller ◽  
...  

2005 ◽  
Vol 72 (3) ◽  
pp. 322-332 ◽  
Author(s):  
Jane K Kay ◽  
John R Roche ◽  
Eric S Kolver ◽  
Norman A Thomson ◽  
Lance H Baumgard

Unidentified constituents in fresh pasture increase milk fat cis-9, trans-11 conjugated linoleic acid (CLA) concentration, and prevent milk fat depression, even though ruminal conditions conducive to reducing milk fat synthesis exist. One possible explanation is vitamin E (α-tocopherol), a constituent high in fresh pasture, but naturally low in conserved/dried forages and cereal grains. Twenty late-lactating dairy cows previously consuming a total mixed ration (TMR) were randomly allocated to one of two dietary treatments for 21 d: TMR (control; n=10); and TMR plus an additional 10000 i.u. α-tocopherol/d (VIT E; n=10). These cows were simultaneously compared with 13 late-lactation dairy cows previously grazing fresh pasture (PAS) balanced for age, parity and genetic merit. Average daily α-tocopherol intakes were approximately 468, 10520 and 1590 i.u./cow for the control, VIT E and PAS treatments, respectively. Dietary α-tocopherol supplementation (VIT E v. control) slightly increased milk fat content by 0·23 percentage units, but did not significantly alter milk fatty acid composition. Plasma trans-11 18[ratio ]1 (VA) content tended to increase and trans-10 18[ratio ]1 levels numerically declined following α-tocopherol supplementation suggesting possible changes in rumen biohydrogenation products. In addition, increased α-tocopherol intake in TMR-fed cows decreased serum urea levels and tended to alter milk fat 15[ratio ]0 suggesting changes in rumen microbial populations. However, when compared with cows grazing pasture, TMR-fed cows supplemented with α-tocopherol, still produced milk with lower cis-9, trans-11 CLA and VA, and higher trans-10 18[ratio ]1 concentrations suggesting α-tocopherol is not a primary reason for milk fatty acid profile differences between pasture and TMR-fed cows. Therefore, additional unknown pasture constituents favour production of fatty acids originating from the cis-9, trans-11 instead of the trans-10, cis-12 CLA biohydrogenation pathways.


Sign in / Sign up

Export Citation Format

Share Document