scholarly journals Investigation of The DGs Effect on The Coordination Between Protective Elements in Distribution Network

Author(s):  
Abdallah Reda ◽  
Prof. M.Farahat ◽  
Prof. Amal F.Abdelgawad ◽  
Associate Prof. A.T.M Taha

Addition of Distributed Generators (DGs) to the electric network have more advantages to the network. It improves the voltage profile and the power flow in the network. In the last decade, DGs is used in power system, especially the distribution system. Coordination study for protective devices must be performed on the distribution network with DGs to reach selectivity with minimum clearance time of fault. Due to DG insertion to the electric system, the short circuit level is changed and coordination between protective elements should be done. This paper presents a technique to avoid the miscoordination problem between protective devices due to the impact of DG units insertion without any additional costs. The proposed technique depend on activating and updating the setting of network relays to achieve correct coordination. Also, it doesn't need any additional costs or any additional equipement to be installed in the electric network. This paper make studies on a real radial system of power transformer with its feeders of a 66kV utility substation before and after adding DGs. ETAP software is used to simulate the network under study.

2015 ◽  
Vol 785 ◽  
pp. 388-392 ◽  
Author(s):  
Hasmaini Mohamad ◽  
Shahrani Shahbudin ◽  
Nofri Yenita Dahlan

Interconnection of Distributed Generation (DG) in distribution system presents many potential benefits as well as drawbacks. The impacts of DG might vary with the types of generator. This paper presents a study on the impacts of synchronous DG's interconnection in distribution system. Steady state analysis is carried out to analyze the impact of DG on voltage profile and short circuit current considering before and after DG interconnection. Dynamic analysis is also performed for investigating the performance of DG when a part of distribution system is being islanded. Results show that the penetration of DG contributes to the changes of power flow in the system, hence give impacts to the overall system performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mezigebu Getinet Yenealem ◽  
Livingstone M. H. Ngoo ◽  
Dereje Shiferaw ◽  
Peterson Hinga

The expansion of renewable energy is continuing powerfully. Electrical system ought to transmit power with diminished loss, improved power quality, and reliability while pleasing the need of customer’s load demand. Nevertheless, owing to the exhaustion of fossil fuels and their environmental impact, the availability of quality, stable, and reliable power in developing countries is worrying. Integrating a solar-wind based microgrid to the distribution network is the more feasible and best alternative solution to gratify the customer intensifying power demand while seeing the strict environmental regulations of generating power. However, the microgrid system connected in a distribution network has diverse problems and challenges. The problems comprise the development of voltage sag and swell, voltage unbalance, and power losses because of the intermittent nature of PV and wind resources. The objective of this study is to integrate microgrid system with STATCOM (static synchronous compensator) controller to ensure the higher power flow with enhanced voltage profile and reduced power loss. MATLAB/PSAT is used to model microgrid and STATCOM controller connected to the grid. Proportional integral (PI) and fuzzy logic controllers (FLC) are also applied to control the STATCOM. The effectiveness of STATCOM with microgrid integration is tested by connecting to the main distribution system using standard IEEE 30-bus system. Finally, it was observed that STATCOM raises the capacity of the distribution line and contributes to voltage profile improvements and power loss reduction.


Author(s):  
Suyanto Suyanto ◽  
Citra Rahmadhani ◽  
Ontoseno Penangsang ◽  
Adi Soeprijanto

<p>Unbalanced three-phase radial distribution system has a complex problem in power system. It has many branches and it is sometimes voltage profile’s not stable at every end branches. For improvement of voltage profile, it can be performed by penetrating of a distributed generation models. Information of voltage profile can be gained by study of power flow.  The Modified Backward-Forward is one of the most widely used methods of development of power flow and has been extensively used for voltage profile analysis. In this paper, a study of power flow based on the Modified Backward-Forward method was used to capture the complexities of unbalanced three phase radial distribution system in the 20 kV distribution network in North Surabaya city, East Java, Indonesia within considering distributed generation models. In summary, for the informants in this study, the Modified Backward-Forward method has had quickly convergence and it’s just needed 3 to 5 iteration of power flow simulation which’s compared to other power flow development methods. Distributed Generation models in the modified the modified 34 BUS IEEE system and 20 kV distribution network has gained voltage profile value on limited range. One of the more significant findings to emerge from this development is that the Modified Backward-Forward method has average of error voltage about 0.0017 % to 0.1749%.</p>


Author(s):  
Silvia Tasnim ◽  
Md. Jashim Uddin ◽  
Synthia Tahsin ◽  
Khairul Anam

— The penetration of Electric Vehicle (EV) on the distribution network has been increased worldwide and this has also boosted up the impacts on power system performance affecting voltage profile, voltage sensitivity factor, harmonics, overloading, increased grid loss resulting in reduced efficiency and power quality. A coordinated charging schedule can reduce this stress on the power grid and show significant improvement of network parameters. In this study, by simulating through Power Factory built-in MV/LV distribution test system, the impact of increasing EV on the distribution system has been analyzed and a simple approach of charging schedule for a centralized charging station has been proposed that will minimize the deteriorating impacts on connected distribution system due to EV charging.


2018 ◽  
Vol 7 (4) ◽  
pp. 2614
Author(s):  
V. Rajesh Kumar ◽  
V. Sai Kiran

 This paper proposes a simple method for solving the distribution system reconfiguration to improve the voltage profile and reduce the losses. In this paper power flow studies are used in matrix form of distribution system with radial, weakly meshed and reconfigured forms. The execution of power flow will specify the bus voltages and branch currents. These parameters are used to analyse the system performance and especially branch currents information is used to convert system radial form to weakly meshed and reconfiguration forms by closing the tie-switches and opening the sectionalizing switches. The same information can be used in large networks to show the improvement in voltage profile and reduction in electrical losses.  


2021 ◽  
Vol 10 (3) ◽  
pp. 1129-1141
Author(s):  
Abdallah R Alzyoud ◽  
Ali S Dalabeeh ◽  
Ayman Y. Al-Rawashdeh ◽  
Anwar Al-Mofleh ◽  
Ahmad Allabadi ◽  
...  

This paper introduces a study of utilizing solar energy farm that is integrated with the national grid based on intensive data availability of solar energy in Jordan. The study discusses the impact and the ability of integrating solar farms into the national grid of Jordan. The study considerd different cases and, various power system studies for connection points of solar farms to medium voltage networks. Among these studies are short circuit level, voltage profile and power losses. The main objective of the study is to analyze impacts of integration of solar farms on distribution systems of the chosen areas. Photovoltaic (PV) system with varying penetration levels are integrated at different locations (connection points) into the distribution network. Calculations are performed and models are built using actual data obtained from the Jordanian power grid with PV interconnection. The effect of the short circuit level, voltage profile and power losses in the distribution system are also analyzed. Finally, the most suitable method of connecting the solar farm to the national power network is recommended.


2021 ◽  
Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>


2021 ◽  
Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>


Author(s):  
Suyanto Suyanto ◽  
Citra Rahmadhani ◽  
Ontoseno Penangsang ◽  
Adi Soeprijanto

<p>Unbalanced three-phase radial distribution system has a complex problem in power system. It has many branches and it is sometimes voltage profile’s not stable at every end branches. For improvement of voltage profile, it can be performed by penetrating of a distributed generation models. Information of voltage profile can be gained by study of power flow.  The Modified Backward-Forward is one of the most widely used methods of development of power flow and has been extensively used for voltage profile analysis. In this paper, a study of power flow based on the Modified Backward-Forward method was used to capture the complexities of unbalanced three phase radial distribution system in the 20 kV distribution network in North Surabaya city, East Java, Indonesia within considering distributed generation models. In summary, for the informants in this study, the Modified Backward-Forward method has had quickly convergence and it’s just needed 3 to 5 iteration of power flow simulation which’s compared to other power flow development methods. Distributed Generation models in the modified the modified 34 BUS IEEE system and 20 kV distribution network has gained voltage profile value on limited range. One of the more significant findings to emerge from this development is that the Modified Backward-Forward method has average of error voltage about 0.0017 % to 0.1749%.</p>


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


Sign in / Sign up

Export Citation Format

Share Document