scholarly journals Loss Minimization in Distribution Network using Wind Power Plant Reactive Power Support

Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>

2021 ◽  
Author(s):  
Aeishwarya Baviskar ◽  
Kaushik Das ◽  
Anca Daniela Hansen ◽  
Panos Menegatos

<div>The increased penetration of wind power plants (WPPs) in distribution networks challenges the distribution system operators (DSOs) to improve and optimize networks’ operation. A higher amount of local power production translates to more losses in the network. This paper proposes a deterministic optimization methodology to minimize the losses in distribution networks with WPPs, by exploiting WPPs’ capability to control reactive power in coordination with the on-load tap changers from the MV/HV transformer, avoiding the need for network reinforcements. The principal objective is to optimize the reactive power flow in the network. Measurements from a real distribution network with a large share of controllable WPPs under varying wind and load conditions are used for the study. The benefits and the challenges of the optimization methodology are assessed and discussed with respect to active power losses, voltage profile and reactive power. The results show that with reactive power support from WPPs, network losses are reduced by 4.2 %. Higher loss reductions (up to 19 %) can be achieved through a coordinated action between the WPPs and TSO. Furthermore, it is shown that the distribution network can act as an asset to the transmission network for reactive power support, via actively controlling WPP’s reactive power.</div>


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


2016 ◽  
Vol 78 (6-3) ◽  
Author(s):  
Hadi Suyono ◽  
Rini Nur Hasanah

Small-scale power plants injected into the existing distribution systems are commonly called as embedded or dispersed generation. The continuously increasing penetration of distributed generation becomes a challenge for conventional power systems. Recently developed distributed generation systems are mostly categorized into small scale plants in terms of power output. However, they are expected to be massive in terms of number. The power plants injection as well as their spread in the whole distribution systems will influence the power flow and losses in the network. Some researches have been undertaken recently to relate the embedded plants with the power losses and voltage profile of the networks. This paper presents a study on the influence of penetration level and concentration of distributed generation on power losses in the network. Steady-state power flow analysis is used to examine the power losses variation for a variety of distributed generation penetration. Based on the power flow analysis, voltage profile and power losses due to the power plants injection can be determined. The influence of various technologies used is also considered, including the use of wind power, photovoltaic and micro-hydro power plants. Four different scenarios to determine the effect of dispersed generation injection are proposed, starting from the original grid in the first scenario, being added with photovoltaic plant (0.5MVA) in the second scenario, the addition of wind power plant (0.5MVA) to the grid in the third scenario, and the fourth is the addition of microhydro power plant (1x2.5MVA) to the grid. The considered scenarios are based on the existing potential of the plants in the network system under concern, i.e. the Sengkaling Substation of the Pujon Feeder in Malang, Indonesia. Based on the analysis results, the injection of microhydro power plant (Scenario 4) presents the best influence being compared to the three other scenarios. The microhydro power potential is greater than that of the PV and wind power plants. Besides, it is well located in the middle of distribution system. From the point of view of power loss analysis, Scenario 4 also results in the smallest loss compared to the other scenarios. The least favorable losses reduction is given by Scenario 3 using the wind power plant injection, although the injection of renewable energy power plants in this study in general is proven to improve the voltage profile and reduction of power losses in the system.    


2019 ◽  
Vol 67 (11) ◽  
pp. 904-911
Author(s):  
Holm Hinners ◽  
Daniel Mayorga Gonzalez ◽  
Johanna Myrzik ◽  
Christian Rehtanz

Abstract This paper describes a multiple-input, multiple-output distributed control concept for the operation of a distribution network. The concept aims to coordinate a set of distributed generators within the distribution grid to regulate the active and reactive power flow exchange with the transmission network and adjacent distribution grids. The control concept further aims to control the distribution network voltage profile such that voltages continuously remain within a predefined secure operation range. The implementation of such a concept can substitute for the decreasing flexibility in the transmission network which results from the decommissioning of conventional power plants in the future. As proof-of-concept, an implementation is tested through time-domain simulation.


Author(s):  
Mogaligunta Sankaraiah ◽  
Sanna Suresh Reddy ◽  
M Vijaya Kumar

<p>Wind is available with free of cost anywhere in the world, this wind can be used for power generation due to many advantages. This attracts the researchers to work on wind power plants. The presence of wind power plants on distribution system causes major influence on voltage controlled devices (VCDs) in terms of life of the devices. Therefore, this paper proposes grey wolf optimization method (GWO) together with forecasted load one day in advance. VCDs are on load tap changer (ULTC) and capacitors (CS), there are two main objectives first one is curtail of distribution network (DN) loss and second one is curtailing of ULTC and CS switching’s. Objectives are achieved by controlling the reactive power of DFIG in coordination with VCDs. The proposed method is planned and applied in Matlab/Simulink on 10KV practical system with DFIG located at different locations. To validate the efficacy of GWO, results are compared with conventional and dynamic programming methods without profane grid circumstances.</p>


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3485
Author(s):  
Seyed Morteza Alizadeh ◽  
Sakineh Sadeghipour ◽  
Cagil Ozansoy ◽  
Akhtar Kalam

Wind Power Plants (WPPs) are generally located in remote areas with weak distribution connections. Hence, the value of Short Circuit Capacity (SCC), WPP size and the short circuit impedance angle ratio (X/R) are all very critical in the voltage stability of a distribution system connected WPP. This paper presents a new voltage stability model based on the mathematical relations between voltage, the level of wind power penetration, SCC and X/R at a given Point of Common Coupling (PCC) of a distribution network connected WPP. The proposed model introduces six equations based on the SCC and X/R values seen from a particular PCC point. The equations were developed for two common types of Wind Turbine Generators (WTGs), including: the Induction Generator (IG) and the Double Fed Induction Generator (DFIG). Taking advantage of the proposed equations, design engineers can predict how the steady-state PCC voltage will behave in response to different penetrations of IG- and DFIG-based WPPs. In addition, the proposed equations enable computing the maximum size of the WPP, ensuring grid code requirements at the given PCC without the need to carry out complex and time-consuming computational tasks or modelling of the system, which is a significant advantage over existing WPP sizing approaches.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012085
Author(s):  
H Arnawan ◽  
I Muzamir ◽  
I Y Mohd ◽  
R A R Siti ◽  
S Hadi

Abstract The installation of distributed generation with renewable energy becomes a solution when the demand for electricity is increasing and electricity generation with fossil energy is increasingly limited. There has been a change in power flow before and after the installation of distributed generation. However there can be a negative impact on the distribution network losses applicable to reactive power flows. There are cases where the distributed generation capacity is greater than the supplied load, resulting in distributed generation operating as a system voltage regulator and requiring reactive power, so that DG will absorb the reactive power from the system. The increasing demand for reactive power in DG also causes an increase in the current flowing in the network, and causes an increase in losses in the network, especially for the losses in reactive power.


Sign in / Sign up

Export Citation Format

Share Document