scholarly journals The role of indocyanine green videoangiography with FLOW 800 analysis for the surgical management of central nervous system tumors: an update

2018 ◽  
Vol 44 (6) ◽  
pp. E6 ◽  
Author(s):  
Francesco Acerbi ◽  
Ignazio G. Vetrano ◽  
Tommaso Sattin ◽  
Camilla de Laurentis ◽  
Lorenzo Bosio ◽  
...  

OBJECTIVEIndocyanine green videoangiography (ICG-VA) is an intraoperative technique used to highlight vessels in neurovascular surgery. Its application in the study of the vascular pathophysiology in CNS tumors and its role in their surgical management are still rather limited. A recent innovation of ICG-VA (i.e., the FLOW 800 algorithm integrated in the surgical microscope) allows a semiquantitative evaluation of cerebral blood flow. The aim of this study was to evaluate for the first time the systematic application of ICG-VA and FLOW 800 analysis during surgical removal of CNS tumors.METHODSBetween May 2011 and December 2017, all cases in which ICG-VA and FLOW 800 analysis were used at least one time before, during, or after the tumor resection, and in which surgical videos were available, were retrospectively reviewed. Results of the histological analysis were analyzed together with the intraoperative ICG-VA with FLOW 800 in order to investigate the tumor-related videoangiographic features.RESULTSSeventy-one patients who underwent surgery for cerebral and spinal tumors were intraoperatively analyzed using ICG-VA with FLOW 800, either before or after tumor resection, for a total of 93 videoangiographic studies. The histological diagnosis was meningioma in 25 cases, glioma in 14, metastasis in 7, pineal region tumor in 5, hemangioblastoma in 4, chordoma in 3, and other histological types in 13 cases. The authors identified 4 possible applications of ICG-VA and FLOW 800 in CNS tumor surgery: extradural surveys allowed exploration of sinus patency and the course of veins before dural opening; preresection surveys helped in identifying pathological vascularization (arteriovenous fistulas and neo-angiogenesis) and regional venous outflow, and in performing temporary venous clipping tests, when necessary; postresection surveys were conducted to evaluate arterial and venous patency and parenchymal perfusion after tumor removal; and a premyelotomy survey was conducted in intramedullary tumors to highlight the posterior median sulcus.CONCLUSIONSThe authors found ICG-VA with FLOW 800 to be a useful method to monitor blood flow in the exposed vessels and parenchyma during microsurgical removal of CNS tumors in selected cases. In particular, a preresection survey provides useful information about pathophysiological changes of brain vasculature related to the tumor and aids in the individuation of helpful landmarks for the surgical approach, and the postresection survey helps to prevent potential complications associated with the resection (such as local hypoperfusion or venous infarction).

2021 ◽  
Author(s):  
Yue Sun ◽  
Zilan Wang ◽  
Fan Jiang ◽  
Xingyu Yang ◽  
Tan Xin ◽  
...  

Abstract Background: When it comes to central nervous system tumor resection, preserving vital venous structures to avoid devastating consequences such as brain edema and hemorrhage is important. Wheras, in clinical practice, it is difficult to obtain clear and vivid intraoperative venous visualization and blood flow analysis.Methods: We presented our clinical cases to demonstrate the process of venous preservation during surgical resection through the application of indocyanine green videoangiography (ICG-VA) integrated with FLOW 800. Galen vein, sylvian vein and superior cerebral veins of the brain were included.Results: Clear documentations of the veins from different venous groups were obtained via ICG-VA integrated with FLOW 800, which semiquantitatively analyzed the flow dynamics. ICG-VA integrated with FLOW 800 enabled us to achieve brain tumor resection without venous injury and obstructing the venous flux.Conclusions: ICG-VA integrated with FLOW 800 is an efficient method for venous preservation, though further comparison between ICG-VA integrated with FLOW 800 and other techniques of intraoperative blood flow monitoring is needed.


2022 ◽  
Author(s):  
yue sun ◽  
Zilan Wang ◽  
Fan Jiang ◽  
Xingyu Yang ◽  
Xin Tan ◽  
...  

Abstract Background: When it comes to central nervous system tumor resection, preserving vital venous structures to avoid devastating consequences such as brain edema and hemorrhage is important. Wheras, in clinical practice, it is difficult to obtain clear and vivid intraoperative venous visualization and blood flow analysis.Methods: We retrospectively reviewed patients underwent brain tumor resection through the application of indocyanine green videoangiography (ICG-VA) integrated with FLOW 800 from February 2019 to December 2020 and presented our clinical cases to demonstrate the process of venous preservation. Galen vein, sylvian vein and superior cerebral veins were included in our cases.Results: Clear documentations of the veins from different venous groups were obtained via ICG-VA integrated with FLOW 800, which semiquantitatively analyzed the flow dynamics. ICG-VA integrated with FLOW 800 enabled us to achieve brain tumor resection without venous injury and obstructing the venous flux.Conclusions: ICG-VA integrated with FLOW 800 is an available method for venous preservation, though further comparison between ICG-VA integrated with FLOW 800 and other techniques of intraoperative blood flow monitoring is needed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Naoki Kato ◽  
Vincent Prinz ◽  
Julius Dengler ◽  
Peter Vajkoczy

Intraoperative indocyanine green (ICG) videoangiography is widely used in patients undergoing neurosurgery. FLOW800 is a recently developed analytical tool for ICG videoangiography to assess semi-quantitative flow dynamics; however, its efficacy is unknown. In this study, we evaluated its functionality in the assessment of flow dynamics of arteriovenous malformation (AVM) through ICG videoangiography under clinical settings. ICG videoangiography was performed in the exposed AVM in eight patients undergoing surgery. FLOW800 analysis was applied directly, and gray-scale and color-coded maps of the surgical field were obtained. After surgery, a region of interest was placed on the individual vessels to obtain time-intensity curves. Parameters of flow dynamics, including the maximum intensity, transit time, and cerebral blood flow index, were calculated using the curves. The color-coded maps provided high-resolution images; however, reconstruction of colored images was restricted by the depth, approach angle, and brain swelling. Semi-quantitative parameters were similar among the feeders, niduses, and drainers. However, a higher cerebral blood flow index was observed in the feeders of large AVM (>3 cm) than in those of small AVM (P < 0.05). Similarly, the cerebral blood flow index values were positively correlated with the nidus volume (P < 0.01). FLOW800 enabled visualization of the AVM structure and safer resection, except in case of deep-seated AVM. Moreover, semi-quantitative values in the individual vessels through using ICG intensity diagram showed different patterns according to size of the AVM. ICG videoangiography showed good performance in evaluating flow dynamics of the AVM in patients undergoing surgery.


2020 ◽  
Author(s):  
Tao Xue ◽  
Ruming Deng ◽  
Bixi Gao ◽  
Zilan Wang ◽  
Chao Ma ◽  
...  

Abstract Objective: Indocyanine green video angiography (ICG–VA) is a safe and effective instrument to assess changes in cerebral blood flow during cerebrovascular surgery. After ICG-VA, FLOW 800 provides a color-coded map to directly observe the dynamic distribution of blood flow and to calculate semiquantitative blood flow parameters later. The purpose of our study is to assess whether FLOW 800 is useful for surgery of complex intracranial aneurysms and to provide reliable evidence for intraoperative decision making.Methods: We retrospectively reviewed patients with complex aneurysms that underwent microsurgical and intraoperative evaluation of ICG-VA and FLOW 800 color-coded maps from February 2019 to May 2020. FLOW 800 data were correlated with patient characteristics, clinical outcomes, and intraoperative decision-making.Results: The study included 32 patients with 42 complex aneurysms. All patients underwent ICG-VA FLOW 800 data provided semiquantitative data regarding localization, flow status in major feeding arteries; color maps confirmed relative adequate flow in parent, branching and bypass vessels. Conclusions: FLOW 800 is a useful supplement to ICG-VA for intraoperative cerebral blood flow assessment. ICG-VA and FLOW 800 can help to determine the blood flow status of the parent artery after aneurysm clipping and the bypass vessels after aneurysm bypass surgery.


2019 ◽  
Vol 131 ◽  
pp. e192-e200 ◽  
Author(s):  
Lukas Goertz ◽  
Marion Hof ◽  
Marco Timmer ◽  
Andre Pascal Schulte ◽  
Christoph Kabbasch ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 453-460 ◽  
Author(s):  
Dimitrios Athanasopoulos ◽  
Axel Heimann ◽  
Makoto Nakamura ◽  
Irini Kakaletri ◽  
Oliver Kempski ◽  
...  

Abstract BACKGROUND Fluorescent-guided techniques in vascular neurosurgery can be demonstrated via black and white indocyanine green videoangiography (ICG-VA). Multispectral imaging (MFL) is a new method, which overlaps fluorescence with the white light and provides a fluorescent white light augmented reality image to the surgeon. OBJECTIVE To investigate (a) whether MFL can enhance the visualization of the blood-flow with simultaneous visualization of the anatomic structures and (b) if MFL can ergonomically improve the microvascular surgical treatment compared to ICG-VA. METHODS A digital imaging of the blood flow after intravenous injection of ICG on 7 pigs was performed in real time under white light, standard fluorescence, and MFL. The blood flow was interrupted with a surgical clip, demonstrating the blockage of the blood flow. We prospectively included 30 patients with vascular deformities. The vasculature was visualized on the microscope's monitor and through the microscope's eyepiece. RESULTS In the animal experiment, the visualization of the anatomy and the blood flow under MFL produced high resolution images. The occlusion of blood vessels demonstrated sufficiently the blockage of tissue perfusion and its reperfusion after clip removal. During all 30 surgical cases, the MFL technique and the direct delivery of the pseudo-colored image through the eyepiece allowed for enhanced anatomic and dynamic data. CONCLUSION MFL was shown to be superior to the classic ICG-VA, delivering enhanced data and notably improving the workflow due to the simultaneous and precise white light visualization of the blood flow and the surrounding anatomic structures.


2021 ◽  
Vol 1 (9) ◽  
Author(s):  
Suguru Nagamitsu ◽  
Natsue Kaneko ◽  
Toshikazu Nagatsuna ◽  
Hiroaki Yasuda ◽  
Manabu Urakawa ◽  
...  

BACKGROUNDIdiopathic dissecting cerebral aneurysms (IDCAs) are male dominant but are extremely rare in children. Many IDCAs in children are located in the posterior cerebral artery and the supraclinoid internal cervical artery. No cases of IDCA of the distal anterior cerebral artery (ACA) have been reported.OBSERVATIONSA previously healthy 7-month-old boy experienced afebrile seizures and presented at the authors’ hospital 1 week after the first seizure. He was not feeling well but had no neurological deficits. The authors diagnosed a ruptured aneurysm of the right distal ACA based on imaging results. He underwent emergency craniotomy to prevent re-rupture of the aneurysm. Using intraoperative indocyanine green videoangiography, the authors confirmed peripheral blood flow and then performed aneurysmectomy. Pathological examination of the aneurysm revealed a thickened intima, fragmentation of the internal elastic lamina, and a hematoma in the aneurysmal wall. The authors ultimately diagnosed IDCA because no cause was indicated, including a history of trauma. The boy recovered after surgery and was subsequently discharged with no complications.LESSONSThe authors reported, for the first time, IDCA of the distal ACA in an infant. The trapping technique is often used for giant fusiform aneurysms in infants. Indocyanine green videoangiography is useful for evaluating peripheral blood flow during trapping in this case.


2019 ◽  
Vol 131 (5) ◽  
pp. 1413-1422 ◽  
Author(s):  
Gerrit Fischer ◽  
Jana Rediker ◽  
Joachim Oertel

OBJECTIVEThe quality of surgical treatment of intracranial aneurysms is determined by complete aneurysm occlusion while preserving blood flow in the parent, branching, and perforating arteries. For a few years, there has been a nearly noninvasive and cost-effective technique for intraoperative flow evaluation: microscope-integrated indocyanine green videoangiography (mICG-VA). This method allows for real-time information about blood flow in the aneurysm and the involved vessels, but its limitations are seen in the evaluation of structures located in the depth of the surgical field, especially through small craniotomies. To compensate for these drawbacks, an endoscope-integrated ICG-VA (eICG-VA) was developed. The objective of the present study was to assess the use of eICG-VA in comparison with mICG-VA for intraoperative blood flow evaluation.METHODSIn the period between January 2011 and January 2015, 216 patients with a total of 248 intracranial saccular aneurysms were surgically treated in the Department of Neurosurgery of Saarland University Medical Center in Homburg/Saar, Germany. During 95 surgeries in 88 patients with a total of 108 aneurysms, intraoperative evaluation was performed with both eICG-VA and mICG-VA. After clipping, evaluation of complete aneurysm occlusion and flow in the parent, branching, and perforating arteries was performed using both methods. Intraoperative applicability of each technique was compared with the other and with postoperative digital subtraction angiography as a standard evaluation technique.RESULTSEvaluation of completeness of aneurysm occlusion and of flow in the parent, branching, and perforating arteries was more successful with eICG-VA than with mICG-VA, especially for aneurysm neck assessment (88.9% vs 69.4%). For 63.9% of the aneurysms (n = 69), both methods were equivalent, but in 30.6% of the cases (n = 33), the eICG-VA provided better results for evaluating the post-clipping situation. In 4.6% of these aneurysms (n = 5), the information given by the additional endoscope considerably changed the surgical procedure. Thus, one residual aneurysm (0.9%), two neck remnants (1.9%), and two branch occlusions (1.9%) could be prevented. Nevertheless, two incomplete aneurysm occlusions (1.9%) and six neck remnants (5.6%) were revealed by postoperative digital subtraction angiography.CONCLUSIONSEndoscope-integrated ICG-VA seems to be an improvement that might increase the quality of aneurysm surgery by providing additional information. It offers higher illumination, magnification, and an extended viewing angle. Its main advantage is its ability to assess deep-seated aneurysms, especially through small craniotomies, but further studies are required.


2020 ◽  
Vol 132 (6) ◽  
pp. 1715-1723
Author(s):  
Ju-Hwi Kim ◽  
Kyung-Sub Moon ◽  
Ji-Ho Jung ◽  
Woo-Youl Jang ◽  
Tae-Young Jung ◽  
...  

OBJECTIVEIndocyanine green videoangiography (ICGVA) has been used in many neurosurgical operations, including vascular and brain tumor fields. In this study, the authors applied ICGVA to intracranial meningioma surgery and evaluated it usefulness with attention to collateral venous flow.METHODSForty-two patients with intracranial meningioma who underwent ICGVA during microsurgical resection were retrospectively analyzed. For ICGVA, the ICG was injected intravenously at the standard dose of 12.5 mg before and/or after tumor resection. Intravascular fluorescence from blood vessels was imaged through a microscope with a special filter and infrared excitation light to illuminate the operating field. The authors assessed the benefits of ICGVA and analyzed its findings with preoperative radiological findings on MRI.RESULTSICGVA allowed real-time assessment of the patency and flow direction in very small peritumoral vessels in all cases. A safe dural incision could also be done based on information from ICGVA. The collateral venous channel due to venous obstruction of tumoral compression was found in 10 cases, and venous flow restoration after tumor resection was observed promptly after tumor resection in 4 cases. Peritumoral brain edema (PTBE) was observed on preoperative T2-weighted MRI in 19 patients. The presence of collateral venous circulation or flow restoration was significantly related to PTBE formation in multivariate analysis (p = 0.001; HR 0.027, 95% CI 0.003–0.242).CONCLUSIONSICGVA, an excellent method for monitoring blood flow during meningioma resection, provides valuable information as to the presence of venous collaterals and flow restoration. Furthermore, the fact that the presence of venous collaterals was found to be associated with PTBE may directly support the venous theory as the pathogenesis of PTBE formation.


Sign in / Sign up

Export Citation Format

Share Document