Lateral lumbar interbody fusion in revision surgery for restenosis after posterior decompression

2020 ◽  
Vol 49 (3) ◽  
pp. E11 ◽  
Author(s):  
Yoshifumi Kudo ◽  
Ichiro Okano ◽  
Tomoaki Toyone ◽  
Akira Matsuoka ◽  
Hiroshi Maruyama ◽  
...  

OBJECTIVEThe purpose of this study was to compare the clinical results of revision interbody fusion surgery between lateral lumbar interbody fusion (LLIF) and posterior lumbar interbody fusion (PLIF) or transforaminal lumbar interbody fusion (TLIF) with propensity score (PS) adjustments and to investigate the efficacy of indirect decompression with LLIF in previously decompressed segments on the basis of radiological assessment.METHODSA retrospective study of patients who underwent revision surgery for recurrence of neurological symptoms after posterior decompression surgery was performed. Postoperative complications and operative factors were evaluated and compared between LLIF and PLIF/TLIF. Moreover, postoperative improvement in cross-sectional areas (CSAs) in the spinal canal and intervertebral foramen was evaluated in LLIF cases.RESULTSA total of 56 patients (21 and 35 cases of LLIF and PLIF/TLIF, respectively) were included. In the univariate analysis, the LLIF group had significantly more endplate injuries (p = 0.03) and neurological deficits (p = 0.042), whereas the PLIF/TLIF group demonstrated significantly more dural tears (p < 0.001), surgical site infections (SSIs) (p = 0.02), and estimated blood loss (EBL) (p < 0.001). After PS adjustments, the LLIF group still showed significantly more endplate injuries (p = 0.03), and the PLIF/TLIF group demonstrated significantly more dural tears (p < 0.001), EBL (p < 0.001), and operating time (p = 0.04). The PLIF/TLIF group showed a trend toward a higher incidence of SSI (p = 0.10). There was no statistically significant difference regarding improvement in the Japanese Orthopaedic Association scores between the 2 surgical procedures (p = 0.77). The CSAs in the spinal canal and foramen were both significantly improved (p < 0.001).CONCLUSIONSLLIF is a safe, effective, and less invasive procedure with acceptable complication rates for revision surgery for previously decompressed segments. Therefore, LLIF can be an alternative to PLIF/TLIF for restenosis after posterior decompression surgery.

2020 ◽  
Vol 14 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Hiroaki Nakashima ◽  
Tokumi Kanemura ◽  
Kotaro Satake ◽  
Kenyu Ito ◽  
Yoshimoto Ishikawa ◽  
...  

Study Design: Retrospective comparative study.Purpose: We compared clinical and radiographical outcomes after lumbar decompression revision surgery for restenosis by lateral lumbar interbody fusion (LLIF) and posterior lumbar interbody fusion (PLIF).Overview of Literature: Indirect lumbar decompression with LLIF was used to treat degenerative lumbar diseases requiring neural decompression. However, only a few studies have focused on the effectiveness of this technique for restenosis after lumbar decompression.Methods: We retrospectively investigated 52 cases involving lumbar interbody fusions for restenosis with spondylolisthesis after lumbar decompressions; these cases consisted of 15 patients who underwent indirect decompression with LLIF and posterior fixation and 37 patients who underwent the same procedure with PLIF. We compared Japanese Orthopaedic Association (JOA) scores and perioperative complications between groups. The cross-sectional areas of the thecal sac on magnetic resonance imaging were measured before, immediately after, and 2 years after surgery. We conducted statistical analyses using unpaired t -test and Fisher’s exact tests, and a <i>p</i> -value <0.05 was considered statistically significant.Results: The operative time was significantly shorter in the LLIF group than in the PLIF group (115.3±33.6 min vs. 186.2±34.2 min, respectively; <i>p</i> <0.001). In addition, the intraoperative blood loss was significantly lower in the LLIF group than in the PLIF group (58.2±32.7 mL vs. 303.2±140.1 mL, respectively; <i>p</i> <0.001). We found two cases of transient lateral thigh weakness (13.3%) in the LLIF group and five cases of incidental durotomy, one case of deep infection, and one case of neurological deterioration in the PLIF group—resulting in a higher complication incidence (18.9%), although it did not reach (<i>p</i> =0.63). The JOA scores improved significantly in both groups.Conclusions: Indirect decompression using LLIF provided acceptable clinical and radiographical outcomes in patients with restenosis with spondylolisthesis after lumbar decompression; no revision-surgery-specific complications were found. Our results suggest that LLIF is a safe and minimally invasive procedure for revision surgery.


2013 ◽  
Vol 18 (3) ◽  
pp. 260-264 ◽  
Author(s):  
Imad Saeed Khan ◽  
Ashish Sonig ◽  
Jai Deep Thakur ◽  
Papireddy Bollam ◽  
Anil Nanda

Object Transforaminal lumbar interbody fusion (TLIF) has been increasingly used to treat degenerative spine disease, including that in patients in whom earlier decompressive procedures have failed. Reexploration in these cases is always challenging and is thought to pose a higher risk of complications. To the best of the authors' knowledge, there are no current studies specifically analyzing the effects of previous lumbar decompressive surgeries on the complication rates of open TLIF. Methods The authors performed a retrospective study of surgeries performed by a single surgeon. A total of 187 consecutive patients, in whom the senior author (A.N.) had performed open TLIF between January 2007 and January 2011, met the inclusion criteria. The patients were divided into two groups (primary and revision TLIF) for the comparison of perioperative complications. Results Overall, the average age of the patients was 49.7 years (range 18–80 years). Of the 187 patients, 73 patients had no history of lumbar surgery and 114 were undergoing revision surgery. Fifty-four patients (28.9%) had a documented complication intraoperatively or postoperatively. There was no difference in the rate on perioperative complications between the two groups (overall, medical, wound related, inadvertent dural tears [DTs], or neural injury). Patients who had undergone more than one previous lumbar surgery were, however, more likely to have suffered from DTs (p = 0.054) and neural injuries (p = 0.007) compared with the rest. Conclusions In the hands of an experienced surgeon, revision open TLIF does not necessarily increase the risk of perioperative complications compared with primary TLIF. Two or more previous lumbar decompressive procedures, however, increase the risk of inadvertent DTs and neural injury.


Author(s):  
Austin Q. Nguyen ◽  
Jackson P. Harvey ◽  
Krishn Khanna ◽  
Bryce A. Basques ◽  
Garrett K. Harada ◽  
...  

OBJECTIVE Anterior lumbar interbody fusion (ALIF) and lateral lumbar interbody fusion (LLIF) are alternative and less invasive techniques to stabilize the spine and indirectly decompress the neural elements compared with open posterior approaches. While reoperation rates have been described for open posterior lumbar surgery, there are sparse data on reoperation rates following these less invasive procedures without direct posterior decompression. This study aimed to evaluate the overall rate, cause, and timing of reoperation procedures following anterior or lateral lumbar interbody fusions without direct posterior decompression. METHODS This was a retrospective cohort study of all consecutive patients indicated for an ALIF or LLIF for lumbar spine at a single academic institution. Patients who underwent concomitant posterior fusion or direct decompression surgeries were excluded. Rates, causes, and timing of reoperations were analyzed. Patients who underwent a revision decompression were matched with patients who did not require a reoperation, and preoperative imaging characteristics were analyzed to assess for risk factors for the reoperation. RESULTS The study cohort consisted of 529 patients with an average follow-up of 2.37 years; 40.3% (213/529) and 67.3% (356/529) of patients had a minimum of 2 years and 1 year of follow-up, respectively. The total revision rate was 5.7% (30/529), with same-level revision in 3.8% (20/529) and adjacent-level revision in 1.9% (10/529) of patients. Same-level revision patients had significantly shorter time to revision (7.14 months) than adjacent-level revision patients (31.91 months) (p < 0.0001). Fifty percent of same-level revisions were for a posterior decompression. After further analysis of decompression revisions, an increased preoperative canal area was significantly associated with a lower risk of further decompression revision compared to the control group (p = 0.015; OR 0.977, 95% CI 0.959–0.995). CONCLUSIONS There was a low reoperation rate after anterior or lateral lumbar interbody fusions without direct posterior decompression. The majority of same-level reoperations were due to a need for further decompression. Smaller preoperative canal diameters were associated with the need for revision decompression.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Yang ◽  
Liangming Zhang ◽  
Jianwen Dong ◽  
Zihao Chen ◽  
Peigen Xie ◽  
...  

Aim. To investigate the feasibility and effectiveness of intraoperative myelography in determining adequacy of indirect spinal canal decompression during transpsoas lateral lumbar interbody fusion (LLIF). Methods. Seven patients diagnosed with degenerative lumbar spinal stenosis (DLSS) were prospectively included to this study. All patients underwent LLIF and subsequently received intraoperative myelography to determine the effect of indirect spinal canal decompression, which was visualized in both anterior-posterior and lateral images. Those patients with insufficient indirect canal decompression were further resolved by microendoscopic canal decompression (MECD). Radiological parameters, including stenosis ratio and dural sac area of operated levels, were measured and compared before and after operation. Besides, all patients were followed up for at least one year using visual analogue scale (VAS) for back and leg, Japanese Orthopaedic Association score (JOA), and Oswestry disability index (ODI). Results. Seven patients with 8 operated levels underwent LLIF safely and demonstrated significant symptom relief postoperatively. Five operated levels showed adequate indirect canal decompression intraoperatively, while the remaining three levels did not achieve the adequacy, and their residual stenosis was resolved following MECD. Radiological parameters were improved statistically when compared with preoperation (P<0.05). Furthermore, neurological symptoms of all patients were also improved significantly (P<0.05), shown by improved VAS (back and leg), JOA, and ODI at both two-week and one-year follow-up. Conclusions. Intraoperative myelography during LLIF is able to assess adequacy of indirect canal decompression for DLSS, thus promising favorable clinical outcomes.


2019 ◽  
Vol 30 (4) ◽  
pp. 439-445 ◽  
Author(s):  
Sandro M. Krieg ◽  
Lukas Bobinski ◽  
Lucia Albers ◽  
Bernhard Meyer

OBJECTIVELateral lumbar interbody fusion (LLIF) is frequently used for anterior column stabilization. Many authors have reported that intraoperative neuromonitoring (IONM) of the lumbar plexus nerves is mandatory for this approach. However, even with IONM, the reported motor and sensory deficits are still considerably high. Thus, the authors’ approach was to focus on the indication, trajectory, and technique instead of relying on IONM findings per se. The objective of this study therefore was to analyze the outcome of our large cohort of patients who underwent LLIF without IONM.METHODSThe authors report on 157 patients included from 2010 to 2016 who underwent LLIF as an additional stabilizing procedure following dorsal instrumentation. LLIF-related complications as well as clinical outcomes were evaluated.RESULTSThe mean follow-up was 15.9 ± 12.0 months. For 90.0% of patients, cage implantation by LLIF was the first retroperitoneal surgery. There were no cases of surgery-related hematoma, vascular injury, CSF leak, or any other visceral injury. Between 1 and 4 cages were implanted per surgery, most commonly at L2–3 and L3–4. The mean length of surgery was 92.7 ± 35 minutes, and blood loss was 63.8 ± 57 ml. At discharge, 3.8% of patients presented with a new onset of motor weakness, a new sensory deficit, or the deterioration of leg pain due to LLIF surgery. Three months after surgery, 3.5% of the followed patients still reported surgery-related motor weakness, 3.6% leg pain, and 9.6% a persistent sensory deficit due to LLIF surgery.CONCLUSIONSThe results of this series demonstrate that the complication rates for LLIF without IONM are comparable, if not superior, to those in previously reported series using IONM. Hence, the authors conclude that IONM is not mandatory for LLIF procedures if the surgical approach is tailored to the respective level and if the visualization of nerves is performed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Wang ◽  
Xiangyao Sun ◽  
Tongtong Zhang ◽  
Siyuan Sun ◽  
Chao Kong ◽  
...  

The treatment effects of topping-off technique were still controversial. This study compared all available data on postoperative clinical and radiographic outcomes of topping-off technique and posterior lumbar interbody fusion (PLIF). PubMed, EMBASE, and Cochrane were systematically reviewed. Variations included radiographical adjacent segment disease (RASD), clinical adjacent segment disease (CASD), global lumbar lordosis (GLL), visual analogue scale (VAS) of back (VAS-B) and leg (VAS-L), Oswestry disability index (ODI), Japanese Orthopaedic Association (JOA) score, duration of surgery, estimated blood loss (EBL), reoperation rates, and complication rates. Sixteen studies, including 1372 cases, were selected for the analysis. Rates of proximal RASD (P=0.0004), distal RASD (P=0.03), postoperative VAS-B (P=0.0001), postoperative VAS-L (P=0.02), EBL (P=0.007), and duration of surgery (P=0.02) were significantly lower in topping-off group than those in PLIF group. Postoperative ODI after 3 years (P=0.04) in the topping-off group was significantly less than that in the PLIF group. There was no significant difference in the rates of CASD (P=0.06), postoperative GLL (P=0.14), postoperative ODI within 3 years (P=0.24), and postoperative JOA (P=0.70) and in reoperation rates (P=0.32) and complication rates (P=0.27) between topping-off group and PLIF. The results confirmed that topping-off technique could effectively prevent ASDs after lumbar internal fixation. However, this effect is effective in preventing RASD. Topping-off technique is more effective in improving the subjective feelings of patients rather than objective motor functions compared with PLIF. With the development of surgical techniques, both topping-off technique and PLIF are safe.


2020 ◽  
Vol 32 (6) ◽  
pp. 781-787
Author(s):  
Daehyun Park ◽  
Praveen V. Mummaneni ◽  
Ratnesh Mehra ◽  
Yonguk Kwon ◽  
Sungtae Kim ◽  
...  

OBJECTIVEThe goal of this study was to evaluate factors that are associated with the need for additional posterior direct decompressive surgery after anterior lumbar interbody fusion (ALIF) or lateral lumbar interbody fusion (LLIF).METHODSEighty-six adult patients who underwent ALIF or LLIF for degenerative spondylolisthesis and foraminal stenosis were enrolled. Patient factors (age, sex, number of surgery levels, and visual analog scale [VAS] score for leg and back pain); procedure-related factors (cage height and lordosis); and radiographic measurements (disc height [DH]; foraminal height [FH], foraminal area [FA], central canal diameter [CCD], and facet joint degeneration [FD]) were analyzed. All patients underwent staged surgery on 2 different days, with the anterior portion first, followed by the posterior portion.RESULTSOf 86 patients, 62 underwent posterior decompression and 24 had no posterior decompression. There were no significant differences between groups with regard to age, sex, preoperative VAS score for back pain, cage height, cage angulation, preoperative DH, FH, FA, CCD, and FD (p > 0.05). The group that underwent posterior decompression showed statistically different numbers of treated segments (1.92 vs 1.21, p < 0.01), preoperative VAS leg score (7.9 vs 6.3), symptom duration (14.2 months vs 9.4 months), postoperative DH improvement (61.3% vs 96.2%), postoperative FH improvement (21.5% vs 32.1%), postoperative FA improvement (24.1% vs 36.9%), and cage height minus preoperative DH (5.3 mm vs 7.5 mm) compared with the nondecompression group.CONCLUSIONSThere appears to be some correlation between the need for posterior decompression and the number of treated segments, VAS leg scores, symptom duration, FH, FA, and difference between the cage height and preoperative DH. In selected patients undergoing staged surgery, indirect decompression without direct decompression may be a reasonable option in treating degenerative spinal conditions.


2021 ◽  
Author(s):  
Ifije E Ohiorhenuan ◽  
Jakub Godzik ◽  
Juan S Uribe

Abstract Lateral lumbar interbody fusion (LLIF) is a widely used technique for anterior fusion. However, posterior decompression or instrumentation often requires repositioning the patient, which increases operative time. This video describes the prone LLIF as a modification of the standard surgical technique. The prone LLIF facilitates simultaneous decompression and fusion, which avoids the need for repositioning the patient, increasing operative efficiency. Positioning, fluoroscopic considerations, and operative nuances involved in performing the LLIF in the prone position are described, and an illustrative case is presented. The patient provided informed consent for the procedure and videography. LLIF in the prone position can decrease operative time and increase operative efficiency. The prone position is a viable alternative to the conventional lateral decubitus position. Video used with permission from Barrow Neurological Institute, Phoenix, Arizona.


Spine ◽  
2014 ◽  
Vol 39 (5) ◽  
pp. E326-E331 ◽  
Author(s):  
Venu M. Nemani ◽  
Alexander Aichmair ◽  
Fadi Taher ◽  
Darren R. Lebl ◽  
Alexander P. Hughes ◽  
...  

2010 ◽  
Vol 13 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Arien J. Smith ◽  
Marc Arginteanu ◽  
Frank Moore ◽  
Alfred Steinberger ◽  
Martin Camins

Object Recent advances in the field of spinal implants have led to the development of the bioabsorbable interbody cage. Although much has been written about their advantageous characteristics, little has been reported regarding complications associated with these cages. The authors conducted this prospective cohort study to compare fusion and complication rates in patients undergoing transforaminal lumbar interbody fusion (TLIF) with carbon fiber cages versus biodegradable cages made from 70/30 poly(l-lactide-co-d,l-lactide) (PLDLA). Methods Between January 2005 and May 2006, 81 patients with various degenerative and/or structural pathologies affecting the lumbar spine underwent single- or multilevel TLIF with posterior segmental pedicle screw fixation using implants made of carbon fiber (37 patients) or 70/30 PLDLA (44 patients). Clinical and radiological follow-up was performed at 6 weeks, 3 months, 6 months, and 1 year, and is ongoing. The incidence of nonunion, screw breakage, and cage migration were compared between the 2 groups. Results There was no significant difference in demographic data between the 2 groups, the mean number of lumbar levels operated, or distribution of the levels operated. There was a significantly increased incidence of nonunion (8 patients, 18.2%) and cage migrations (8 patients, 18.2%) in patients receiving the PLDLA implants compared with carbon fiber implants (no patients) (p = 0.006 and 0.007, respectively). There was no significant difference in demographic data between patients with cage migration and the rest of the patient population. Five of the 8 cases of migration occurred at the L5–S1 level while the remaining 3 occurred at the L4–5 level. The mean time to implant failure was 9.3 months. Conclusions This study showed an increased incidence of nonunion (18.2%) and postsurgical cage migration (18.2%) in patients undergoing TLIF with biodegradable cages versus carbon fiber implants (0%) (p = 0.006 and 0.007, respectively).


Sign in / Sign up

Export Citation Format

Share Document