scholarly journals Dorsal displacement of the facial nerve in vestibular schwannoma surgery

2021 ◽  
Vol 5 (2) ◽  
pp. V9
Author(s):  
Gustavo S. Jung ◽  
Joel Fernando Sanabria Duarte ◽  
Afonso H. de Aragão ◽  
Ronaldo Pereira Vosgerau ◽  
Ricardo Ramina

The course of the facial nerve (FN) has been extensively investigated in patients with vestibular schwannomas (VSs). FN running dorsally to the tumor capsule accounts for less than 3% of the cases. Diffusion tensor imaging (DTI)–based fiber tracking helps to preoperatively identify the FN. During surgery, a higher risk of injury is associated with the dorsal location of the FN. The authors demonstrate the nuances and tricks to identify and preserve a dorsal displaced FN during resection of a large VS, T3b according to the Hannover classification, through the retrosigmoid-transmeatal approach. The video can be found here: https://stream.cadmore.media/r10.3171/2021.7.FOCVID2182

2018 ◽  
Vol 44 (3) ◽  
pp. E5 ◽  
Author(s):  
Amey R. Savardekar ◽  
Devi P. Patra ◽  
Jai D. Thakur ◽  
Vinayak Narayan ◽  
Nasser Mohammed ◽  
...  

OBJECTIVETotal tumor excision with the preservation of neurological function and quality of life is the goal of modern-day vestibular schwannoma (VS) surgery. Postoperative facial nerve (FN) paralysis is a devastating complication of VS surgery. Determining the course of the FN in relation to a VS preoperatively is invaluable to the neurosurgeon and is likely to enhance surgical safety with respect to FN function. Diffusion tensor imaging–fiber tracking (DTI-FT) technology is slowly gaining traction as a viable tool for preoperative FN visualization in patients with VS.METHODSA systematic review of the literature in the PubMed, Cochrane Library, and Web of Science databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and those studies that preoperatively localized the FN in relation to a VS using the DTI-FT technique and verified those preoperative FN tracking results by using microscopic observation and electrophysiological monitoring during microsurgery were included. A pooled analysis of studies was performed to calculate the surgical concordance rate (accuracy) of DTI-FT technology for FN localization.RESULTSFourteen studies included 234 VS patients (male/female ratio 1:1.4, age range 17–75 years) who had undergone preoperative DTI-FT for FN identification. The mean tumor size among the studies ranged from 29 to 41.3 mm. Preoperative DTI-FT could not visualize the FN tract in 8 patients (3.4%) and its findings could not be verified in 3 patients (1.2%), were verified but discordant in 18 patients (7.6%), and were verified and concordant in 205 patients (87.1%).CONCLUSIONSPreoperative DTI-FT for FN identification is a useful adjunct in the surgical planning for large VSs (> 2.5 cm). A pooled analysis showed that DTI-FT successfully identifies the complete FN course in 96.6% of VSs (226 of 234 cases) and that FN identification by DTI-FT is accurate in 90.6% of cases (205 of 226 cases). Larger studies with DTI-FT–integrated neuronavigation are required to look at the direct benefit offered by this specific technique in preserving postoperative FN function.


2016 ◽  
Vol 125 (4) ◽  
pp. 787-794 ◽  
Author(s):  
Fei Song ◽  
Yuanzheng Hou ◽  
Guochen Sun ◽  
Xiaolei Chen ◽  
Bainan Xu ◽  
...  

OBJECTIVE Preoperative determination of the facial nerve (FN) course is essential to preserving its function. Neither regular preoperative imaging examination nor intraoperative electrophysiological monitoring is able to determine the exact position of the FN. The diffusion tensor imaging–based fiber tracking (DTI-FT) technique has been widely used for the preoperative noninvasive visualization of the neural fasciculus in the white matter of brain. However, further studies are required to establish its role in the preoperative visualization of the FN in acoustic neuroma surgery. The object of this study is to evaluate the feasibility of using DTI-FT to visualize the FN. METHODS Data from 15 patients with acoustic neuromas were collected using 3-T MRI. The visualized FN course and its position relative to the tumors were determined using DTI-FT with 3D Slicer software. The preoperative visualization results of FN tracking were verified using microscopic observation and electrophysiological monitoring during microsurgery. RESULTS Preoperative visualization of the FN using DTI-FT was observed in 93.3% of the patients. However, in 92.9% of the patients, the FN visualization results were consistent with the actual surgery. CONCLUSIONS DTI-FT, in combination with intraoperative FN electrophysiological monitoring, demonstrated improved FN preservation in patients with acoustic neuroma. FN visualization mainly included the facial-vestibular nerve complex of the FN and vestibular nerve.


Sign in / Sign up

Export Citation Format

Share Document