dti tractography
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 27)

H-INDEX

27
(FIVE YEARS 3)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 340
Author(s):  
Matthew Muir ◽  
Sarah Prinsloo ◽  
Hayley Michener ◽  
Jeffrey I. Traylor ◽  
Rajan Patel ◽  
...  

Surgeons must optimize the onco-functional balance by maximizing the extent of resection and minimizing postoperative neurological morbidity. Optimal patient selection and surgical planning requires preoperative identification of nonresectable structures. Transcranial magnetic stimulation is a method of noninvasively mapping the cortical representations of the speech and motor systems. Despite recent promising data, its clinical relevance and appropriate role in a comprehensive mapping approach remains unknown. In this study, we aim to provide direct evidence regarding the clinical utility of transcranial magnetic stimulation by interrogating the eloquence of TMS points. Forty-two glioma patients were included in this retrospective study. We collected motor function outcomes 3 months postoperatively. We overlayed the postoperative MRI onto the preoperative MRI to visualize preoperative TMS points in the context of the surgical cavity. We then generated diffusion tensor imaging tractography to identify meaningful subsets of TMS points. We correlated the resection of preoperative imaging features with clinical outcomes. The resection of TMS-positive points was significantly predictive of permanent deficits (p = 0.05). However, four out of eight patients had TMS-positive points resected without a permanent deficit. DTI tractography at a 75% FA threshold identified which TMS points are essential and which are amenable to surgical resection. TMS combined with DTI tractography shows a significant prediction of postoperative neurological deficits with both a high positive predictive value and negative predictive value.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Ilirjana Hyseni ◽  
Hannah M. Lindsey ◽  
Jessica Faber ◽  
James M. McHenry ◽  
...  

Plasticity is often implicated as a reparative mechanism when addressing structural and functional brain development in young children following traumatic brain injury (TBI); however, conventional imaging methods may not capture the complexities of post-trauma development. The present study examined the cingulum bundles and perforant pathways using diffusion tensor imaging (DTI) in 21 children and adolescents (ages 10–18 years) 5–15 years after sustaining early childhood TBI in comparison with 19 demographically-matched typically-developing children. Verbal memory and executive functioning were also evaluated and analyzed in relation to DTI metrics. Beyond the expected direction of quantitative DTI metrics in the TBI group, we also found qualitative differences in the streamline density of both pathways generated from DTI tractography in over half of those with early TBI. These children exhibited hypertrophic cingulum bundles relative to the comparison group, and the number of tract streamlines negatively correlated with age at injury, particularly in the late-developing anterior regions of the cingulum; however, streamline density did not relate to executive functioning. Although streamline density of the perforant pathway was not related to age at injury, streamline density of the left perforant pathway was significantly and positively related to verbal memory scores in those with TBI, and a moderate effect size was found in the right hemisphere. DTI tractography may provide insight into developmental plasticity in children post-injury. While traditional DTI metrics demonstrate expected relations to cognitive performance in group-based analyses, altered growth is reflected in the white matter structures themselves in some children several years post-injury. Whether this plasticity is adaptive or maladaptive, and whether the alterations are structure-specific, warrants further investigation.


2021 ◽  
pp. 1-8
Author(s):  
Ramin A. Morshed ◽  
Anthony T. Lee ◽  
Elaina J. Wang ◽  
Jacob S. Young ◽  
Soonmee Cha ◽  
...  

OBJECTIVE The clinical outcomes for patients undergoing resection of diffuse glioma within the middle frontal gyrus (MFG) are understudied. Anatomically, the MFG is richly interconnected to known language areas, and nearby subcortical fibers are at risk during resection. The goal of this study was to determine the functional outcomes and intraoperative mapping results related to resection of MFG gliomas. Additionally, the study aimed to evaluate if subcortical tract disruption on imaging correlated with functional outcomes. METHODS The authors performed a retrospective review of 39 patients with WHO grade II–IV diffuse gliomas restricted to only the MFG and underlying subcortical region that were treated with resection and had no prior treatment. Intraoperative mapping results and postoperative neurological deficits by discharge and 90 days were assessed. Diffusion tensor imaging (DTI) tractography was used to assess subcortical tract integrity on pre- and postoperative imaging. RESULTS The mean age of the cohort was 37.9 years at surgery, and the median follow-up was 5.1 years. The mean extent of resection was 98.9% for the cohort. Of the 39 tumors, 24 were left sided (61.5%). Thirty-six patients (92.3%) underwent intraoperative mapping, with 59% of patients undergoing an awake craniotomy. No patients had positive cortical mapping sites overlying the tumor, and 12 patients (33.3%) had positive subcortical stimulation sites. By discharge, 8 patients had language dysfunction, and 5 patients had mild weakness. By 90 days, 2 patients (5.1%) had persistent mild hand weakness only. There were no persistent language deficits by 90 days. On univariate analysis, preoperative tumor size (p = 0.0001), positive subcortical mapping (p = 0.03), preoperative tumor invasion of neighboring subcortical tracts on DTI tractography (p = 0.0003), and resection cavity interruption of subcortical tracts on DTI tractography (p < 0.0001) were associated with an increased risk of having a postoperative deficit by discharge. There were no instances of complete subcortical tract transections in the cohort. CONCLUSIONS MFG diffuse gliomas may undergo extensive resection with minimal risk for long-term morbidity. Partial subcortical tract interruption may lead to transient but not permanent deficits. Subcortical mapping is essential to reduce permanent morbidity during resection of MFG tumors by avoiding complete transection of critical subcortical tracts.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shin Tai Chong ◽  
Xinrui Liu ◽  
Hung-Wen Kao ◽  
Chien-Yuan Eddy Lin ◽  
Chih-Chin Heather Hsu ◽  
...  

Diffusion Tensor Imaging (DTI) tractography has been widely used in brain tumor surgery to ensure thorough resection and minimize functional damage. However, due to enhanced anisotropic uncertainty in the area with peritumoral edema, diffusion tractography is generally not practicable leading to high false-negative results in neural tracking. In this study, we evaluated the usefulness of the neurite orientation dispersion and density imaging (NODDI) derived tractography for investigating structural heterogeneity of the brain in patients with brain tumor. A total of 24 patients with brain tumors, characterized by peritumoral edema, and 10 healthy counterparts were recruited from 2014 to 2021. All participants underwent magnetic resonance imaging. Moreover, we used the images obtained from the healthy participants for calibrating the orientation dispersion threshold for NODDI-derived corticospinal tract (CST) reconstruction. Compared to DTI, NODDI-derived tractography has a great potential to improve the reconstruction of fiber tracking through regions of vasogenic edema. The regions with edematous CST in NODDI-derived tractography demonstrated a significant decrease in the intracellular volume fraction (VFic, p &lt; 0.000) and an increase in the isotropic volume fraction (VFiso, p &lt; 0.014). Notably, the percentage of the involved volume of the concealed CST and lesion-to-tract distance could reflect the motor function of the patients. After the tumor resection, four patients with 1–5 years follow-up were showed subsidence of the vasogenic edema and normal CST on DTI tractography. NODDI-derived tractography revealed tracts within the edematous area and could assist neurosurgeons to locate the neural tracts that are otherwise not visualized by conventional DTI tractography.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martin A. Schaller-Paule ◽  
Eike Steidl ◽  
Manoj Shrestha ◽  
Ralf Deichmann ◽  
Helmuth Steinmetz ◽  
...  

Introduction: Ischemic and hemorrhagic strokes in the brainstem and cerebellum with injury to the functional loop of the Guillain-Mollaret triangle (GMT) can trigger a series of events that result in secondary trans-synaptic neurodegeneration of the inferior olivary nucleus. In an unknown percentage of patients, this leads to a condition called hypertrophic olivary degeneration (HOD). Characteristic clinical symptoms of HOD progress slowly over months and consist of a rhythmic palatal tremor, vertical pendular nystagmus, and Holmes tremor of the upper limbs. Diffusion Tensor Imaging (DTI) with tractography is a promising method to identify functional pathway lesions along the cerebello-thalamo-cortical connectivity and to generate a deeper understanding of the HOD pathophysiology. The incidence of HOD development following stroke and the timeline of clinical symptoms have not yet been determined in prospective studies—a prerequisite for the surveillance of patients at risk.Methods and Analysis: Patients with ischemic and hemorrhagic strokes in the brainstem and cerebellum with a topo-anatomical relation to the GMT are recruited within certified stroke units of the Interdisciplinary Neurovascular Network of the Rhine-Main. Matching lesions are identified using a predefined MRI template. Eligible patients are prospectively followed up and present at 4 and 8 months after the index event. During study visits, a clinical neurological examination and brain MRI, including high-resolution T2-, proton-density-weighted imaging, and DTI tractography, are performed. Fiberoptic endoscopic evaluation of swallowing is optional if palatal tremor is encountered.Study Outcomes: The primary endpoint of this prospective clinical multicenter study is to determine the frequency of radiological HOD development in patients with a posterior fossa stroke affecting the GMT at 8 months after the index event. Secondary endpoints are identification of (1) the timeline and relevance of clinical symptoms, (2) lesion localizations more prone to HOD occurrence, and (3) the best MR-imaging regimen for HOD identification. Additionally, (4) DTI tractography data are used to analyze individual pathway lesions. The aim is to contribute to the epidemiological and pathophysiological understanding of HOD and hereby facilitate future research on therapeutic and prophylactic measures.Clinical Trial Registration: HOD-IS is a registered trial at https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&amp;TRIAL_ID=DRKS00020549.


2021 ◽  
Vol 11 ◽  
Author(s):  
Giovanni Raffa ◽  
Maria Catena Quattropani ◽  
Giuseppina Marzano ◽  
Antonello Curcio ◽  
Vincenzo Rizzo ◽  
...  

IntroductionThe goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors.Material and MethodsPatients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network.ResultsTwenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03).ConclusionsThe nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.


2021 ◽  
Vol 1 (19) ◽  
Author(s):  
Timothy J. Kaufmann ◽  
Vance T. Lehman ◽  
Lily C. Wong-Kisiel ◽  
Panagiotis Kerezoudis ◽  
Kai J. Miller

BACKGROUND Open surgical treatment of insular epilepsy holds particular risk of injury to middle cerebral artery branches, the operculum (through retraction), and adjacent language-related white matter tracts in the language-dominant hemisphere. Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (LITT) is a surgical alternative that allows precise lesioning with potentially less operative risk. The authors presented the case of a 13-year-old girl with intractable, MRI-negative, left (dominant hemisphere) insular epilepsy that was treated with LITT. Diffusion tensor imaging (DTI) tractography was used to aid full posterior insular lesioning in the region of stereo electroencephalography–determined seizure onset while avoiding thermal injury to the language-related superior longitudinal fasciculus (SLF)/arcuate fasciculus (AF) and inferior fronto-occipital fasciculus (IFOF). OBSERVATIONS DTI tractography was used successfully in planning insular LITT and facilitated a robust insular ablation with sharp margins at the interfaces with the SLF/AF and IFOF. These tracts were spared, and no neurological deficits were induced through LITT. LESSONS Although it is technically demanding and has important limitations that must be understood, clinically available DTI tractography adds precision and confidence to insular laser ablation when used to protect important language-related white matter tracts.


2021 ◽  
Vol 84/117 (2) ◽  
Author(s):  
Eduard Neuman ◽  
Ondřej Šandor ◽  
Michal Hána ◽  
Miloš Keřkovský ◽  
Marek Joukal ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document