scholarly journals Paradoxical symptomatic cerebral blood flow decreases after combined revascularization surgery for patients with pediatric moyamoya disease: illustrative case

2022 ◽  
Vol 3 (3) ◽  

BACKGROUND Transient neurological deficits (TNDs) develop after cerebral revascularization in patients with moyamoya disease (MMD). The authors report a rare pediatric MMD case with extensive decreased cerebral blood flow (CBF) and prolonged TNDs after combined revascularization. OBSERVATIONS A 9-year-old boy presented with transient left upper limb weakness, and MMD was diagnosed. A right-sided combined surgery was performed. Two years after the surgery, frequent but transient facial (right-sided) and upper limb weakness appeared. The left internal carotid artery terminal stenosis had progressed. Therefore, a left combined revascularization was performed. The patient’s motor aphasia and right upper limb weakness persisted for approximately 10 days after surgery. Magnetic resonance angiography showed that the direct bypass was patent, but extensive decreases in left CBF were observed using single photon emission tomography. With adequate fluid therapy and blood pressure control, the neurological symptoms eventually disappeared, and CBF improved. LESSONS The environment of cerebral hemodynamics is heterogeneous after cerebral revascularization for MMD, and the exact mechanism of CBF decreases was not identified. TNDs are significantly associated with the onset of stroke during the early postoperative period. Therefore, appropriate treatment is desired after determining complex cerebral hemodynamics using CBF studies.

1985 ◽  
Vol 23 (5) ◽  
pp. 468-474 ◽  
Author(s):  
Shigekazu Takeuchi ◽  
Ryuichi Tanaka ◽  
Ryoji Ishii ◽  
Tadashi Tsuchida ◽  
Keishi Kobayashi ◽  
...  

2012 ◽  
Vol 32 (11) ◽  
pp. 2066-2075 ◽  
Author(s):  
Yasuyuki Kaku ◽  
Koji Iihara ◽  
Norio Nakajima ◽  
Hiroharu Kataoka ◽  
Kenji Fukuda ◽  
...  

In moyamoya disease (MMD), surgical revascularization may be complicated with postoperative hyperperfusion. We analyzed cerebral perfusion and metabolism using positron emission tomography (PET) or single-photon emission computed tomography (SPECT) before and after bypass surgery on 42 sides of 34 adult patients with MMD. In seven cases (16.7%) with symptomatic hyperperfusion, diagnosed by qualitative 123I-iodoamphetamine (IMP) SPECT, a subsequent PET study during postoperative subacute stages revealed significantly increased cerebral blood flow (CBF) from 34.1 ± 8.2 to 74.3 ± 12.8 mL/100 g per minute ( P < 0.01), a persistent increase in cerebral blood volume (CBV)from 5.77 ± 1.67 to 7.01 ± 1.44 mL/100 g and a significant decrease in oxygen extraction fraction (OEF) from 0.61 ± 0.09 to 0.40 ± 0.08 ( P < 0.01). Mean absolute CBF values during symptomatic hyperperfusion were more than the normal control +2 standard deviations, the predefined criteria of PET. Interestingly, two patients with markedly increased cerebral metabolic rate of oxygen (CMRO2) at hyperperfusion were complicated with postoperative seizure. Among preoperative PET parameters, increased OEF was the only significant risk factor for symptomatic hyperperfusion ( P < 0.05). This study revealed that symptomatic hyperperfusion in MMD is characterized by temporary increases in CBF >100% over preoperative values caused by prolonged recovery of increased CBV.


1998 ◽  
Vol 14 (8) ◽  
pp. 366-371 ◽  
Author(s):  
T. Ishikawa ◽  
Naruhiko Tanaka ◽  
Kiyohiro Houkin ◽  
Satoshi Kuroda ◽  
Hiroshi Abe ◽  
...  

1981 ◽  
Vol 1 (4) ◽  
pp. 385-389 ◽  
Author(s):  
Martin Lauritzen ◽  
Leif Henriksen ◽  
Niels A. Lassen

Regional cerebral blood flow (CBF) was studied in 16 normal adult volunteers during rest and in 10 the study was repeated during skilled hand movements. A fast-rotating (“dynamic”), single-photon emission computerized tomograph (ECT) with four detector heads was used. Xenon-133 was inhaled over a 1-min period at a concentration of 10 mCi/L. The arrival and washout of the radioisotope was recorded during four 1-min periods. Two slices, 2 cm thick, 7 and 12 cm above the orbitomeatal line were obtained in every study. CBF averaged 60 ml/100 g/min (SD ± 11) in the lower slice and 51 ml/100 g/min (SD ± 13) in the upper slice. A symmetric pattern comparing right to left sides was found in both slices. Finger tapping and writing with the right hand increased CBF in specific areas of the upper slice: in the contralateral hand area by 35 ± 15% ( p < 0.025), and in the supplementary motor area on both sides by 34 ± 15% ( p < 0.025).


1998 ◽  
Vol 274 (5) ◽  
pp. H1715-H1728 ◽  
Author(s):  
Mauro Ursino ◽  
Carlo Alberto Lodi

The relationships among cerebral blood flow, cerebral blood volume, intracranial pressure (ICP), and the action of cerebrovascular regulatory mechanisms (autoregulation and CO2 reactivity) were investigated by means of a mathematical model. The model incorporates the cerebrospinal fluid (CSF) circulation, the intracranial pressure-volume relationship, and cerebral hemodynamics. The latter is based on the following main assumptions: the middle cerebral arteries behave passively following transmural pressure changes; the pial arterial circulation includes two segments (large and small pial arteries) subject to different autoregulation mechanisms; and the venous cerebrovascular bed behaves as a Starling resistor. A new aspect of the model exists in the description of CO2 reactivity in the pial arterial circulation and in the analysis of its nonlinear interaction with autoregulation. Simulation results, obtained at constant ICP using various combinations of mean arterial pressure and CO2 pressure, substantially support data on cerebral blood flow and velocity reported in the physiological literature concerning both the separate effects of CO2 and autoregulation and their nonlinear interaction. Simulations performed in dynamic conditions with varying ICP underline the existence of a significant correlation between ICP dynamics and cerebral hemodynamics in response to CO2 changes. This correlation may significantly increase in pathological subjects with poor intracranial compliance and reduced CSF outflow. In perspective, the model can be used to study ICP and blood velocity time patterns in neurosurgical patients in order to gain a deeper insight into the pathophysiological mechanisms leading to intracranial hypertension and secondary brain damage.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Yoshiteru Shimoda ◽  
Shinya Sonobe ◽  
Kuniyasu Niizuma ◽  
Toshiki Endo ◽  
Hidenori Endo ◽  
...  

BACKGROUND An arteriovenous fistula is an abnormal arteriovenous shunt between an artery and a vein, which often leads to venous congestion in the central nervous system. The blood flow near the fistula is different from normal artery flow. A novel method to detect the abnormal shunting flow or pressure near the fistula is needed. OBSERVATIONS A 76-year-old woman presented to the authors’ institute with progressive right upper limb weakness. Right vertebral angiography showed a fistula between the right extracranial vertebral artery (VA) and the right vertebral venous plexus at the C7 level. The patient underwent endovascular treatment for shunt flow reduction. Before the procedure, blood pressures were measured at the proximal VA, distal VA near the fistula, and just at the fistula and drainer using a microcatheter. The blood pressure waveforms were characteristically different in terms of resistance index, half-decay time, and appearance of dicrotic notch. The fistula was embolized with coils and N-butyl cyanoacrylate solution. LESSONS During endovascular treatment, the authors were able to digitally record the vascular pressure waveform from the tip of the microcatheter and succeeded in calculating several parameters that characterize the shunting flow. Furthermore, these parameters could help recognize the abnormal blood flow, allowing a safer endovascular surgery.


2012 ◽  
Vol 18 (3) ◽  
pp. 264-274 ◽  
Author(s):  
N. Kawai ◽  
M. Kawanishi ◽  
A. Shindou ◽  
N. Kudomi ◽  
Y. Yamamoto ◽  
...  

Balloon test occlusion (BTO) of the internal carotid artery (ICA) combined with cerebral blood flow (CBF) study is a sensitive test for predicting the outcome of permanent ICA occlusion. However, false negative results sometimes occur using single photon emission tomography (SPECT). We have recently developed a rapid positron emission tomography (PET) protocol that measures not only the CBF but also the cerebral oxygen metabolism before and during BTO in succession. We measured acute changes in regional CBF and OEF/CMRO2 before and during BTO in three cases with large or giant cerebral aneurysms using the rapid PET protocol. Although no patients showed ischemic symptoms during BTO, PET studies exhibited mildly to moderately decreased CBF (9∼34%) compared to the values obtained before BTO in all cases. The average OEF during BTO was significantly increased (21% and 43%) than that of before BTO in two cases. The two cases were considered to be non-tolerant for permanent ICA occlusion and treated without ICA sacrifice. Measurement of the CBF and OEF/CMRO2 using a rapid PET protocol before and during BTO is feasible and can be used for accurate assessment of tolerance prediction in ICA occlusion.


Sign in / Sign up

Export Citation Format

Share Document