Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage

2007 ◽  
Vol 107 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Carla S. Jung ◽  
Edward H. Oldfield ◽  
Judith Harvey-White ◽  
Michael G. Espey ◽  
Michael Zimmermann ◽  
...  

Object Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be evoked by the decreased availability of nitric oxide (NO). Increased cerebrospinal fluid (CSF) levels of asymmetric dimethyl-l-arginine (ADMA), an endogenous inhibitor of NO synthase (NOS), have been associated with the course and degree of cerebral vasospasm in a primate model of SAH. In this study, the authors sought to determine if similar changes in CSF ADMA levels are observed in patients with SAH, and whether these changes are associated with NO and NOS metabolite levels in the CSF and the presence of cerebral vasospasm. Methods Asymmetric dimethyl-l-arginine, l-arginine, l-citrulline, and nitrite levels were measured in CSF and serum samples collected during the 21-day period after a single aneurysmal SAH in 18 consecutive patients. Samples were also obtained in a control group consisting of seven patients with Chiari malformation Type I and five patients with spontaneous intracerebral hemorrhage without SAH. Vasospasm, defined as a greater than 11% reduction in the anterior circulation vessel diameter ratio compared with the ratio calculated from the initial arteriogram, was assessed on cerebral arteriography performed around Day 7. Results In 13 patients with SAH, arteriographic cerebral vasospasm developed. Cerebrospinal fluid ADMA levels in patients with SAH were higher than in those in the control group (p < 0.001). The CSF ADMA level remained unchanged in the five patients with SAH without vasospasm, but was significantly increased in patients with vasospasm after Day 3 (6.2 ± 1.7 μM) peaking during Days 7 through 9 (13.3 ± 6.7 μM; p < 0.001) and then gradually decreasing between Days 12 and 21 (8.8 ± 3.2 μM; p < 0.05). Nitrite levels in the CSF were lower in patients with vasospasm compared to patients without vasospasm (p < 0.03). Cerebrospinal fluid ADMA levels positively correlated with the degree of vasospasm (correlation coefficient [CC] = 0.88, p = 0.0001; 95% confidence interval [CI] 0.74–0.95) and negatively correlated with CSF nitrite levels (CC = −0.55; p = 0.017; 95% CI −0.81 to −0.12). Conclusions These results support the hypothesis that ADMA is involved in the progression of cerebral vasospasm. Asymmetric dimethyl-l-arginine and its metabolizing enzymes may be a future target for treatment of cerebral vasospasm after SAH.

2004 ◽  
Vol 101 (5) ◽  
pp. 836-842 ◽  
Author(s):  
Carla S. Jung ◽  
Brian A. Iuliano ◽  
Judith Harvey-White ◽  
Michael G. Espey ◽  
Edward H. Oldfield ◽  
...  

Object. Decreased availability of nitric oxide (NO) has been proposed to evoke delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). Asymmetric dimethyl-l-arginine (ADMA) inhibits endothelial NO synthase (eNOS) and, therefore, may be responsible for decreased NO availability in cases of cerebral vasospasm. The goal of this study was to determine whether ADMA levels are associated with cerebral vasospasm in a primate model of SAH. Methods. Twenty-two cynomolgus monkeys (six control animals and 16 with SAH) were used in this study. The levels of ADMA, l-arginine, l-citrulline, nitrites, and nitrates in cerebrospinal fluid (CSF) and serum were determined on Days 0, 7, 14, and 21 following onset of SAH. Cerebral arteriography was performed to assess the degree of vasospasm. Western blot analyses of the right and left middle cerebral arteries (MCAs) were performed to assess the expression of eNOS, type I protein—arginine methyl transferase (PRMT1) and dimethylarginine dimethylaminohydrolase (DDAH2). Cerebrospinal fluid levels of ADMA remained unchanged in the control group (six animals) and in animals with SAH that did not have vasospasm (five animals; p = 0.17), but the levels increased in animals with vasospasm (11 animals) on Day 7 post-SAH (p < 0.01) and decreased on Days 14 through 21 (p < 0.05). Cerebrospinal fluid levels of ADMA correlated directly with the degree of vasospasm (correlation coefficient = 0.7, p = 0.0001; 95% confidence interval: 0.43–0.83). Levels of nitrite and nitrate as well as those of l-citrulline in CSF were decreased in animals with vasospasm. Furthermore, DDAH2 expression was attenuated in the right spastic MCA on Day 7 post-SAH, whereas eNOS and PRMT1 expression remained unchanged. Conclusions. Changes in the CSF levels of ADMA are associated with the development and resolution of vasospasm found on arteriograms after SAH. The results indicate that endogenous inhibition of eNOS by ADMA may be involved in the development of delayed cerebral vasospasm. Inhibition of ADMA production may provide a new therapeutic approach for cerebral vasospasm after SAH.


1997 ◽  
Vol 3 (3) ◽  
pp. E5 ◽  
Author(s):  
Jeffrey E. Thomas

Chronic delayed cerebral vasospasm (CDCV) remains a serious and often fatal complication of aneurysmal subarachnoid hemorrhage (SAH). The current understanding of its fundamental mechanisms and molecular biological characterization is rudimentary. Two important vasoactive substances have been implicated in CDCV: endothelin-1 (ET-1) and nitric oxide (NO). A 21-amino acid vasoconstrictor peptide, ET-1 has generated interest as a possible important contributor to cerebral vasospasm on the basis of both clinical and experimental evidence suggesting abnormally enhanced production. Nitric oxide is a cell membrane-permeable free radical gas that accounts for the vasodilatory effect of endothelium-derived relaxation factor and is a physiological antagonist of ET-1. As with ET-1, abnormalities of NO production have been implicated in several pathological conditions including cerebral vasospasm. This brief report reviews some of the physiological and regulatory features of these two molecules and explores the possibility of their relationship to cerebral vasospasm.


2016 ◽  
Vol 42 (1-2) ◽  
pp. 97-105 ◽  
Author(s):  
Naoya Matsuda ◽  
Masato Naraoka ◽  
Hiroki Ohkuma ◽  
Norihito Shimamura ◽  
Katsuhiro Ito ◽  
...  

Background: Several clinical studies have indicated the efficacy of cilostazol, a selective inhibitor of phosphodiesterase 3, in preventing cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). They were not double-blinded trial resulting in disunited results on assessment of end points among the studies. The randomized, double-blind, placebo-controlled study was performed to assess the effectiveness of cilostazol on cerebral vasospasm. Methods: Patients with aneurysmal SAH admitted within 24 h after the ictus who met the following criteria were enrolled in this study: SAH on CT scan was diffuse thick, diffuse thin, or local thick, Hunt and Hess score was less than 4, administration of cilostazol or placebo could be started within 48 h of SAH. Patients were randomly allocated to placebo or cilostazol after repair of a ruptured saccular aneurysm by aneurysmal neck clipping or endovascular coiling, and the administration of cilostazol or placebo was continued up to 14 days after initiation of treatment. The primary end point was the occurrence of symptomatic vasospasm (sVS), and secondary end points were angiographic vasospasm (aVS) evaluated on digital subtraction angiography, vasospasm-related new cerebral infarction evaluated on CT scan or MRI, and clinical outcome at 3 months of SAH as assessed by Glasgow Outcome Scale, in which poor outcome was defined as severe disability, vegetative state, and death. All end points were evaluated with blinded assessment. Results: One hundred forty eight patients were randomly allocated to the cilostazol group (n = 74) or the control group (n = 74). The occurrence of sVS was significantly lower in the cilostazol group than in the control group (10.8 vs. 24.3%, p = 0.031), and multiple logistic analysis showed that cilostazol use was an independent factor reducing sVS (OR 0.293, 95% CI 0.099-0.568, p = 0.027). The incidence of aVS and vasospasm-related cerebral infarction were not significantly different between the groups. Poor outcome was significantly lower in the cilostazol group than in the control group (5.4 vs. 17.6%, p = 0.011), and multiple logistic analyses demonstrated that cilostazol use was an independent factor that reduced the incidence of poor outcome (OR 0.221, 95% CI 0.054-0.903, p = 0.035). Severe adverse events due to cilostazol administration did not occur during the study period. Conclusions: Cilostazol administration is effective in preventing sVS and improving outcomes without severe adverse events. A larger-scale study including more cases was necessary to confirm this efficacy of cilostazol.


2002 ◽  
Vol 97 (6) ◽  
pp. 1302-1305 ◽  
Author(s):  
Takao Kamezaki ◽  
Kiyoyuki Yanaka ◽  
Sohji Nagase ◽  
Keishi Fujita ◽  
Noriyuki Kato ◽  
...  

Object. Cerebral vasospasm remains a devastating medical complication of aneurysmal subarachnoid hemorrhage (SAH). Reactive oxygen species and subsequent lipid peroxidation are reported to participate in the causes of cerebral vasospasm. This clinical study was performed to investigate the relationships between levels of lipid peroxides in cerebrospinal fluid (CSF) and both delayed cerebral vasospasm and clinical outcome after SAH. Methods. Levels of phosphatidylcholine hydroperoxide (PCOOH) and cholesteryl ester hydroperoxide (CEOOH) in the CSF were measured in 20 patients with aneurysmal SAH. The patients' CSF was collected within 48 hours of hemorrhage onset and on Day 6 or 7 post-SAH. On Day 7, angiography was performed to verify the degree and extent of the vasospasm. The relationship between the patients' clinical profiles and the levels of lipid peroxides in the CSF were investigated. Both PCOOH and CEOOH were detectable in CSF, and their levels decreased within 7 days after onset of SAH. The levels of CEOOH within 48 hours after onset of hemorrhage were significantly higher in patients in whom symptomatic vasospasm later developed than in patients in whom symptomatic vasospasm did not develop (p = 0.002). Levels of PCOOH measured within 48 hours after onset of hemorrhage were significantly higher in patients with poor outcomes than in patients with good outcomes (p = 0.043). Conclusions. Increased levels of lipid peroxides measured in the CSF during the acute stage of SAH were predictive of both symptomatic vasospasm and poor outcome. Measurements of lipid peroxides in the CSF may be useful prognostically for patient outcomes as well as for predicting symptomatic vasospasm.


2008 ◽  
Vol 28 (6) ◽  
pp. 1204-1211 ◽  
Author(s):  
Robert M Starke ◽  
Grace H Kim ◽  
Ricardo J Komotar ◽  
Zachary L Hickman ◽  
Eric M Black ◽  
...  

Vasospasm is a major cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). Studies have shown a link between single-nucleotide polymorphisms (SNPs) in the endothelial nitric oxide synthase (eNOS) gene and the incidence of coronary spasm and aneurysms. Alterations in the eNOS T-786 SNP may lead to an increased risk of post-aSAH cerebral vasospasm. In this prospective clinical study, 77 aSAH patients provided genetic material and were followed for the occurrence of vasospasm. In multivariate logistic regression analysis, genotype was the only factor predictive of vasospasm. The odds ratio (OR) for symptomatic vasospasm in patients with one T allele was 3.3 (95% confidence interval (CI): 1.1 to 10.0, P=0.034) and 10.9 for TT. Patients with angiographic spasm were 3.6 times more likely to have a T allele (95% CI: 1.3 to 9.6, P=0.013; for TT: OR 12.6). Patients with severe vasospasm requiring endovascular therapy were more likely to have a T allele (OR 3.5, 95% CI: 1.3 to 9.5, P=0.016; for TT: OR 12.0). Patients with the T allele of the eNOS gene are more likely to have severe vasospasm. Presence of this genotype may allow the identification of individuals at high risk for post-aSAH vasospasm and lead to early treatment and improved outcome.


Sign in / Sign up

Export Citation Format

Share Document