Microangiographic study of experimental spinal cord injuries

1971 ◽  
Vol 35 (3) ◽  
pp. 277-286 ◽  
Author(s):  
David J. Fairholm ◽  
Ian M. Turnbull

✓ The pathology of spinal cord injury has been studied in 34 rabbits and 5 dogs with attention focused on the condition of the microvasculature during the evolution of neuronal and axonal degeneration and necrosis. The animals were killed and perfused arterially with colloidal barium from 10 min to 14 days after a controlled spinal injury. Microradiographs of the injured tissues were obtained and compared with corresponding histological sections. Microangiography at 7 to 14 days defines two zones in the injured spinal cord. Zone 1 is located in the posterocentral part of the cord. Capillaries in this region progressively lose their ability to conduct blood and perfusate over the first 4 hours. Degenerative changes in neurons are visible by 1 hour after injury. Necrosis of all elements including capillaries ensues. Zone 2 surrounds Zone 1. Microvascular patterns are normal in Zone 2 although neuronal and axonal degeneration is severe. Pericapillary hemorrhages which occur as early as 10 min after injury in Zone 1 and become progressively larger over the first 4 hours seldom are seen in Zone 2. The evidence indicates that at all times in the pathogenesis of spinal cord injury the microvasculature in Zone 2 is capable of perfusion. Degeneration of neural structures either precedes microvascular breakdown (Zone 1) or occurs in the absence of microvascular disruption (Zone 2). Recovery of damaged neurons and axons depends upon a preserved microcirculation.

1984 ◽  
Vol 61 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Ronald W. J. Ford ◽  
David N. Malm

✓ Hypocarbia, normocarbia, or hypercarbia was maintained for an 8-hour period beginning 30 minutes after acute threshold spinal cord injuries in cats. No statistically significant differences in neurological recovery or histologically assessed tissue preservation were found among the three groups of animals 6 weeks after injury. No animal recovered the ability to walk. It is concluded that maintenance of hypercarbia or hypocarbia during the early postinjury period is no more therapeutic than maintenance of normocarbia. Mortality rates and tissue preservation data suggest, however, that postinjury hypocarbia may be less damaging than hypercarbia.


1988 ◽  
Vol 68 (1) ◽  
pp. 25-30 ◽  
Author(s):  
John R. Ruge ◽  
Grant P. Sinson ◽  
David G. McLone ◽  
Leonard J. Cerullo

✓ Maturity of the spine and spine-supporting structures is an important variable distinguishing spinal cord injuries in children from those in adults. Cinical data are presented from 71 children aged 12 years or younger who constituted 2.7% of 2598 spinal cord-injured patients admitted to the authors' institutions from June, 1972, to June, 1986. The 47 children with traumatic spinal cord injury averaged 6.9 years of age and included 20 girls (43%). The etiology of the pediatric injuries differed from that of adult injuries in that falls were the most common causative factor (38%) followed by automobile-related injuries (20%). Ten children (21.3%) had spinal cord injury without radiographic abnormality (SCIWORA), whereas 27 (57%) had evidence of neurological injury. Complete neurological injury was seen in 19% of all traumatic pediatric spinal cord injuries and in 40% of those with SCIWORA. The most frequent level of spinal injury was C-2 (27%, 15 cases) followed by T-10 (13%, seven cases). Upon statistical examination of the data, a subpopulation of children aged 3 years or younger emerged. These very young children had a significant difference in level of injury, requirement for surgical stability, and sex distribution compared to 4- to 12-year-old children.


2001 ◽  
Vol 94 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Mercedes Zurita ◽  
Jesús Vaquero ◽  
Isabel Zurita

Object. A glycoprotein, CD95 (Fas/APO1) is widely considered to be implicated in the development of apoptosis in a number of tissues. Based on the hypothesis that apoptosis is related to cell death after spinal cord injury (SCI), the authors studied the presence and distribution of CD95 (Fas/APO1)-positive cells in injured spinal cord tissue for the purpose of determining the significance of this protein during the early phases of SCI. Methods. The presence and distribution of cells showing positive immunostaining for CD95 (Fas/APO1) were studied 1, 4, 8, 24, 48, and 72 hours and 1, 2, and 4 weeks after induction of experimental SCI in rats. Studies were conducted using a monoclonal antibody to the CD95 (Fas/APO1) protein. Positivity for CD95 (Fas/APO1) was observed in apoptotic cells, mainly in the gray matter, 1 hour after trauma, and the number of immunostained cells increased for the first 8 hours, at which time the protein was expressed in both gray and white matter. From 24 to 72 hours postinjury, the number of immunostained cells decreased in the gray matter, but increased in the white matter. From then on, there were fewer CD95 (Fas/APO1)-positive cells, but some cells in the white matter still exhibited positive immunostaining 1 and 2 weeks after injury. At 4 weeks, there remained no CD95 (Fas/APO1)-positive cells in injured spinal cord. Conclusions. These findings indicate that CD95 (Fas/APO1) is expressed after SCI, suggesting a role for this protein in the development of apoptosis after trauma and the possibility of a new therapeutic approach to SCI based on blocking the CD95 (Fas/APO1) system.


1988 ◽  
Vol 69 (3) ◽  
pp. 399-402 ◽  
Author(s):  
Joseph M. Piepmeier ◽  
N. Ross Jenkins

✓ Sixty-nine patients with traumatic spinal cord injuries were evaluated for changes in their functional neurological status at discharge from the hospital, and at 1 year, 3 years, and 5+ years following injury. The neurological examinations were used to classify patients' spinal cord injury according to the Frankel scale. This analysis revealed that the majority of improvement in neurological function occurred within the 1st year following injury; however, changes in the patients' status continued for many years. Follow-up examinations at an average of 3 years postinjury revealed that 23.3% of the patients continued to improve, whereas 7.1% had deteriorated compared to their status at 1 year. An examination at an average of 5+ years demonstrated further improvement in 12.5%, with 5.0% showing deterioration compared to the examinations at 3 years. These results demonstrate that, in patients with spinal trauma, significant changes in neurological function continue for many years.


1974 ◽  
Vol 40 (1) ◽  
pp. 3-33 ◽  
Author(s):  
Jewell L. Osterholm

✓ In this review of spinal cord injury research, the author has selected contributions which in his opinion best represent modern experimental concepts regarding the mechanism and management of spinal cord injuries. He has placed special emphasis on the controversial issues appropriate to a new, stimulating, and competitive area of research.


1990 ◽  
Vol 72 (6) ◽  
pp. 894-900 ◽  
Author(s):  
Thomas J. Zwimpfer ◽  
Mark Bernstein

✓ The hallmark of concussion injuries of the nervous system is the rapid and complete resolution of neurological deficits. Cerebral concussion has been well studied, both clinically and experimentally. In comparison, spinal cord concussion (SCC) is poorly understood. The clinical and radiological features of 19 SCC injuries in the general population are presented. Spinal cord injuries were classified as concussions if they met three criteria: 1) spinal trauma immediately preceded the onset of neurological deficits; 2) neurological deficits were consistent with spinal cord involvement at the level of injury; and 3) complete neurological recovery occurred within 72 hours after injury. Most cases involved young males, injured during athletics or due to falls. Concussion occurred at the two most unstable spinal regions, 16 involving the cervical spinal and three the thoracolumbar junction. Fifteen cases presented with combined sensorimotor deficits, while four exhibited only sensory disturbances. Many patients showed signs of recovery with the first few hours after injury and most had completely recovered within 24 hours. Only one case involved an unstable spinal injury. There was no evidence of ligamentous instability, spinal stenosis, or canal encroachment in the remaining 18 cases. Two patients, both children, suffered recurrent SCC injuries. No delayed deterioration or permanent cord injuries occurred. Spinal abnormalities that would predispose the spinal cord to a compressive injury were present in only one of the 19 cases. This suggests that, as opposed to direct cord compression, SCC may be the result of an indirect cord injury. Possible mechanisms are discussed.


1988 ◽  
Vol 68 (5) ◽  
pp. 781-792 ◽  
Author(s):  
Michael G. Fehlings ◽  
Charles H. Tator ◽  
R. Dean Linden

✓ Recent work has indicated that direct-current (DC) fields may promote recovery after acute spinal cord injury. In the present experiments, the therapeutic value of an applied DC field was studied in 40 rats with clip compression injuries of the cord at C7–T1. The rats were randomly allocated to one of four groups including 10 rats each: two groups received a 17-gm cord injury and two groups a 53-gm injury. One group at each injury severity received implantation of a treatment (14 µA) DC stimulator and the other group a control (0 µA) stimulator. Clinical neurological function was assessed weekly by the inclined-plane technique. At 8 weeks after injury, motor and somatosensory evoked potentials (MEP's and SSEP's) were recorded, and the axonal tracer horseradish peroxidase (HRP) was introduced into the cord at T-6. The total number of HRP-labeled cells was counted in every sixth coronal section through the brain stem and motor cortex. All outcome parameters were assessed blindly. In the 17-gm group, there were no significant differences in any outcome measure between control and treated rats. In contrast, in the 53-gm group, the inclined-plane scores, the amplitude of the MEP's, and the number of labeled cells in the red nucleus, raphé nuclei, and vestibular nuclei were greater in treated than in control rats. These data strongly indicate that an applied DC field can produce functional neurological and anatomical improvement in rats with acute spinal cord injuries.


2002 ◽  
Vol 97 (2) ◽  
pp. 252-265 ◽  
Author(s):  
John W. McDonald ◽  
Daniel Becker ◽  
Cristina L. Sadowsky ◽  
John A. Jane ◽  
Thomas E. Conturo ◽  
...  

✓ The authors of this prospective, single-case study evaluated the potential for functional recovery from chronic spinal cord injury (SCI). The patient was motor complete with minimal and transient sensory perception in the left hemibody. His condition was classified as C-2 American Spinal Injury Association (ASIA) Grade A and he had experienced no substantial recovery in the first 5 years after traumatic SCI. Clinical experience and evidence from the scientific literature suggest that further recovery would not take place. When the study began in 1999, the patient was tetraplegic and unable to breathe without assisted ventilation; his condition classification persisted as C-2 ASIA Grade A. Magnetic resonance imaging revealed severe injury at the C-2 level that had left a central fluid-filled cyst surrounded by a narrow donutlike rim of white matter. Five years after the injury a program known as “activity-based recovery” was instituted. The hypothesis was that patterned neural activity might stimulate the central nervous system to become more functional, as it does during development. Over a 3-year period (5–8 years after injury), the patient's condition improved from ASIA Grade A to ASIA Grade C, an improvement of two ASIA grades. Motor scores improved from 0/100 to 20/100, and sensory scores rose from 5–7/112 to 58–77/112. Using electromyography, the authors documented voluntary control over important muscle groups, including the right hemidiaphragm (C3–5), extensor carpi radialis (C-6), and vastus medialis (L2–4). Reversal of osteoporosis and an increase in muscle mass was associated with this recovery. Moreover, spasticity decreased, the incidence of medical complications fell dramatically, and the incidence of infections and use of antibiotic medications was reduced by over 90%. These improvements occurred despite the fact that less than 25 mm2 of tissue (approximately 25%) of the outer cord (presumably white matter) had survived at the injury level. The primary novelty of this report is the demonstration that substantial recovery of function (two ASIA grades) is possible in a patient with severe C-2 ASIA Grade A injury, long after the initial SCI. Less severely injured (lower injury level, clinically incomplete lesions) individuals might achieve even more meaningful recovery. The role of patterned neural activity in regeneration and recovery of function after SCI therefore appears a fruitful area for future investigation.


1972 ◽  
Vol 36 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Henry L. Heyl

✓ This report summarizes in one document the four federal programs devoted specifically to the care and study of spinal cord injuries. The accompanying editorial emphasizes the need for coordination between these agencies in the optimal use of specific capabilities and separate federal budgets, particularly in the planning for regional spinal cord injury centers.


2002 ◽  
Vol 96 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Maria Del Rosario Molano ◽  
James G. Broton ◽  
Judy A. Bean ◽  
Blair Calancie

Object. The authors attempted to determine if there is a significant relationship between the incidence of medical complications and the prophylactic use of methylprednisolone (MP) during spine surgery in patients with acute spinal cord injury (SCI) who had already received MP on hospital admission (typically in the setting of an Emergency Room/Trauma Center). Methods. The authors studied 73 patients with acute SCI who were admitted to the hospital for at least 7 days postinjury. All patients 1) received a 24-hour regimen of MP in the acute period of hospitalization; and 2) underwent surgery to stabilize the spine and/or decompress the spinal cord. Patients were separated into two groups on the basis of whether they received additional MP therapy during spine surgery. A chart review was conducted retrospectively to determine the incidence of complications up to 6 weeks postinjury. Muscle strength and American Spinal Injury Association grades were determined prospectively throughout the follow-up period. In patients who received two courses of MP following acute SCI (one at initial hospitalization and one during surgery), a significantly increased probability of complications was demonstrated compared with those who received no MP therapy during surgery. This was particularly evident when the incidences of serious complications were compared. Conclusions. Prophylactic use of MP as a neuroprotective agent during spine surgery in patients with acute SCI should be avoided in those in whom MP was administered on admission to the hospital.


Sign in / Sign up

Export Citation Format

Share Document