neurological function
Recently Published Documents


TOTAL DOCUMENTS

724
(FIVE YEARS 270)

H-INDEX

55
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Shuaidong Mao ◽  
Huan Huang ◽  
Xianzheng Chen

Objective. To explore the effect of long noncoding RNA H19 (lncRNA H19) on brain injury in rats following experimental intracerebral hemorrhage (ICH). Methods. Rat ICH model was established with type IV collagenase. The neurological function scores were evaluated, and the water content in brain tissue was measured. The nerve injury indexes, inflammatory factors, and oxidative stress indexes were also measured. Moreover, the expression of lncRNA H19 was determined by qRT-PCR, and Western blot detected NF-κB pathway-related protein expression. Results. Compared with the sham group, the neurological function scores, the water content in brain tissue, and levels of injury indicators myelin basic protein (MBP), S-100B, and neuron-specific enolase (NSE) in the ICH rats were significantly increased. Meanwhile, the levels of TNF-α, IL-6, IL-1β, ROS, and MDA were significantly increased, but the levels of SOD were significantly decreased. In addition, the expression of lncRNA H19 in the brain tissue in the ICH group was significantly higher than that in the sham group. After further interference with lncRNA H19 expression (sh-H19 group), the levels of all the above indicators were reversed and the neurological damage was improved. Western blot results showed that the expression of NF-κBp65 and IKKβ was significantly higher, and IκBα expression was lower in the perivascular hematoma tissue in the ICH group compared with the sham group. Compared with the sh-NC group, NF-κBp65 and IKKβ expression were significantly lower and IκBα was significantly higher in the sh-H19 group. Conclusion. lncRNA H19 exacerbated brain injury in rats with ICH by promoting neurological impairment, brain edema, and releasing inflammatory responses and oxidative stress. This may be related to the activation of NF-κB signaling pathway.


Author(s):  
Jiefei Wang ◽  
W. Seth Childers

The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome’s contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.


Author(s):  
Yanxuan Li ◽  
Mengqi Lin ◽  
Ping Lin ◽  
Nengzhi Xia ◽  
Xiaokun Li ◽  
...  

Background: Maternal high-fat diet (MHFD) has been shown to increase susceptibility to neurological disease in later offspring, but the underlying mechanism is not clear. Fibroblast growth factor 21 (FGF21) has been reported to have a neuroprotective effect in stroke, but its mechanism of action remains unknown. In this study, we investigated the mechanism of the effect of MHFD on stroke in offspring in adulthood and the mechanism by which FGF21 acts on stroke and restores neurological function.Methods: We performed transcriptome sequencing analysis on D21 neonatal rats. Bodyweight and blood indicators were recorded in the adult rats after MHFD. FGF21 was administered 7 h after photochemical modeling twice a day for three consecutive days.Results: We found numerous mRNA changes between the MHFD group and a normal maternal normal diet (MND) group at D21, including genes related to astrocyte and PI3K/Akt pathways. The body weight, blood glucose, and triglycerides of the MHFD offspring were higher, ischemic lesions were larger, the number of activated astrocytes was lower, and the neurological function score was worse than that of the MND group. After FGF21 administration, WB and qPCR analyses showed that astrocytes and the PI3K/Akt pathway were upregulated, while NF-κB and inflammatory cytokines expression were inhibited in stroke and peri-stroke regions.Conclusion: Taken together, we conclude that MHFD alters the characteristics of astrocytes and other transcriptome changes in their offspring, leading to a worse prognosis of stroke, while FGF21 plays a neuroprotective role by inhibiting NF-κB and inflammatory factors and activating the PI3K/Akt pathway and activating more astrocytes in the MND group than the MHFD group.


2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Rong Tian ◽  
Gengsheng Mao

The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.


Author(s):  
Gang Wu ◽  
Xi’an Zhang ◽  
Shijun Li ◽  
Dan Zhou ◽  
Jie Bai ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xiaodu Yu ◽  
Xingyou Zheng ◽  
Daoyou Cheng

Objective. This study aimed to evaluate the improvement and neurological function changes of patients with ischemic stroke in the posterior circulation before and after interventional therapy using magnetic resonance imaging (MRI) under genetic algorithm and compressed sensing algorithm. Methods. Thirty-six patients with posterior circulation ischemia who visited the interventional cerebrovascular disease area were included in this study. The treatment effect was observed through abnormal signal changes in the lesion area on each sequence of MRI images before and after treatment. The National Institutes of Health Stroke Scale (NIHSS) was used for the evaluation of the changes in neurological function. Results. The real data experiment results suggested that the peak signal-to-noise ratio (PSNR) = 39.33 and structure similarity (SSIM) = 0.96 in the algorithm reconstructed image, which showed no significant difference with the simulation experiment results of PSNR = 35.19 and SSIM = 0.96 ( P < 0.05 ). In addition, the stenosis rate after interventional treatment (13.89%) was substantially lower than that before treatment (91.67%) ( P < 0.05 ). Cerebral blood flow (CBF) of the bilateral occipital lobes and cerebellum after six months of treatment was higher than that before treatment ( P < 0.05 ), and the incidence of postoperative restenosis was 11.11% (4/36). Conclusion. The combination of genetic algorithm and compressed sensing algorithm had a good effect on MRI image processing. The posterior circulation ischemia interventional stent implantation can effectively improve the stenosis of the vertebral artery and vertebral basilar artery as well as the cerebral tissue perfusion in the ischemic area, which improved the clinical symptoms substantially and reduced the probability of restenosis.


2022 ◽  
Vol 15 ◽  
Author(s):  
Shuanglin Wang ◽  
Jingjing Yang ◽  
Yanli Xu ◽  
Huayun Yin ◽  
Bing Yang ◽  
...  

Objective: Pulmonary complications could badly affect the recovery of neurological function and neurological prognosis of neurological critically ill patients. This study evaluated the effect of high-flow nasal cannula (HFNC) therapy on decreasing pulmonary complications in neurologically critically ill patients.Patients and Methods: The patients admitted to the intensive care unit (ICU) with serious neurological disease and receiving oxygen therapy were retrospectively reviewed (Ethical No. IRB2021-YX-001). Patients were divided into the HFNC group and the conventional oxygen therapy (COT) group. We analyzed the data within these two groups, including patients’ baseline data, short-term outcomes of respiratory complications, general outcomes including hospital stay, ICU stay and mortality, and neurological functions. To analyze the relevant factors, we performed multivariable logistic regression analysis.Results: A total of 283 patients met the criteria, including 164 cases in the HFNC group and 119 cases in the COT group. The HFNC group had remarkably less mechanical ventilation requirement with lower phlegm viscosity. Even more, ICU stay and total hospital stay were significantly shortened in the HNFC group.Conclusion: HFNC decreased pulmonary complications in neurologically critically ill patients and improved recovery of neurological function and neurological prognosis.


Sign in / Sign up

Export Citation Format

Share Document