Dorsal root entry zone lesions to control central pain in paraplegics

1981 ◽  
Vol 55 (3) ◽  
pp. 414-419 ◽  
Author(s):  
Blaine S. Nashold ◽  
Elizabeth Bullitt

✓ Thirteen patients with intractable long-term pain following spinal cord injury and paraplegia were treated with dorsal root entry zone lesions placed at the level just above the transection. Pain relief of 50% or more was achieved in 11 of the 13 patients, with follow-up periods ranging from 5 to 38 months. A previous report showed that central pain from brachial plexus avulsion could be relieved by dorsal root entry zone lesions, and this technique has been extended to the central pain phenomena associated with spinal trauma and paraplegia.

2002 ◽  
Vol 97 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Scott Falci ◽  
Lavar Best ◽  
Rick Bayles ◽  
Dan Lammertse ◽  
Charlotte Starnes

Object. Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically resulted in modest outcomes. A review of the literature indicates that fair to good relief of pain is achieved in approximately 50% of patients when an empirical procedure is performed. This study was undertaken to determine if intramedullary electrical guidance in DREZ lesioning could improve outcomes in patients with SCI-induced central pain. Additionally, electrical data were used to determine if the spinal cord could be somatotopically mapped with regard to this pain of central origin. Methods. Forty-one patients with traumatic SCI and intractable central pain underwent DREZ lesioning in which intramedullary electrical guidance was conducted. In nine patients, recording of DREZ-related spontaneous electrical hyperactivity guided the lesioning process. In 32 patients, recording of DREZ-induced evoked electrical hyperactivity during transcutaneous C-fiber stimulation (TCS) additionally guided lesioning. The follow-up period ranged from 1 to 7 years. The analyzed electrical data allowed for somatotopic mapping of the spinal cord. Conclusions. Intramedullary electrical guidance of DREZ lesioning substantially improves pain outcomes in patients with traumatic SCI—induced central pain, compared with an empiric technique. The best outcome occurs when DREZ-related spontaneous electrical hyperactivity and evoked hyperactivity during TCS are both used to guide the DREZ lesioning procedure. With such guidance, 100% relief of pain was achieved in 84% of patients and 50 to 100% relief of pain in 88%. Somatotopic mapping of the electrical data led to a proposed pain mechanism for below-level pain, implicating the sympathetic nervous system.


Neurosurgery ◽  
2001 ◽  
Vol 48 (6) ◽  
pp. 1269-1277 ◽  
Author(s):  
Madjid Samii ◽  
Steffani Bear-Henney ◽  
Wolf Lüdemann ◽  
Marcos Tatagiba ◽  
Ulrike Blömer

Abstract OBJECTIVE Significant numbers of patients experience intractable pain after brachial plexus root avulsions. Medications and surgical procedures such as amputation of the limb are often not successful in pain treatment. METHODS Forty-seven patients with intractable pain after traumatic cervical root avulsions were treated with dorsal root entry zone coagulation between 1980 and 1998. The dorsal root entry zone coagulation procedure was performed 4 months to 12 years after the trauma, and patients were monitored for up to 18 years (average follow-up period, 14 yr). RESULTS Immediately after surgery, 75% of patients experienced significant pain reduction; this value was reduced to 63% during long-term follow-up monitoring. Nine patients experienced major complications, including subdural hematomas (n = 2) and motor weakness of the lower limb (n = 7). Improved coagulation electrodes with thermistors that could produce smaller and more-accurate lesion sizes, which were introduced in 1989, significantly reduced the number of complications. CONCLUSION Central deafferentation pain that persists and becomes intractable among patients with traumatic cervical root avulsions has been difficult to treat in the past. Long-term follow-up monitoring of patients who underwent the dorsal root entry zone coagulation procedure in the cervical cord indicated that long-lasting satisfactory relief is possible for the majority of individuals, with acceptable morbidity rates.


1995 ◽  
Vol 82 (1) ◽  
pp. 28-34 ◽  
Author(s):  
John H. Sampson ◽  
Robert E. Cashman ◽  
Blaine S. Nashold ◽  
Allan H. Friedman

✓ This review was undertaken to determine the efficacy of using dorsal root entry zone (DREZ) lesions to treat intractable pain caused by trauma to the conus medullaris and cauda equina. Traumatic lesions of this area are unique in that both the spinal cord and the peripheral nerve roots are injured. Although DREZ lesions have been shown to relieve pain of spinal cord origin in many patients, they have been shown not to relieve pain of peripheral nerve origin. Therefore, 39 patients with trauma to the conus medullaris and cauda equina who underwent DREZ lesioning for intractable pain were reviewed retrospectively. The results of this review demonstrate the efficacy of DREZ lesions in these patients. At a mean follow-up period of 3.0 years, 54% of patients were pain-free without medications, and 20% required only nonnarcotic analgesic drugs for pain that no longer interfered with their daily activities. Better outcomes were noted in patients with an incomplete neurological deficit, with pain having an “electrical” character, and with injuries due to blunt trauma. Operative complications included weakness (four patients), bladder or sexual dysfunction (three), cerebrospinal fluid leak (two), and wound infection (two), but overall, 79.5% of patients (31 of 39) were without serious complications. Complications were limited to patients with prior tissue damage at the surgical exploration site and were most prevalent in patients who underwent bilateral DREZ lesions. In conclusion, this preliminary report suggests that DREZ lesions may be useful in combating intractable pain from traumatic injuries to the conus medullaris and cauda equina, with some risk to neurological function that may be acceptable in this group of patients.


2018 ◽  
Vol 28 (6) ◽  
pp. 612-620 ◽  
Author(s):  
Scott Falci ◽  
Charlotte Indeck ◽  
Dave Barnkow

OBJECTIVESurgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators.METHODSThree unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords—only cephalad to the level of spinal cord transection—with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years.RESULTSAll 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators.CONCLUSIONSThe results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain generators.


1991 ◽  
Vol 74 (6) ◽  
pp. 916-932 ◽  
Author(s):  
Daniel Jeanmonod ◽  
Marc Sindou

✓ The goal of this study was to assess the effects of the dorsal root entry zone (DREZ) lesioning procedure, microsurgical DREZ-otomy (MDT), on spinal cord somatosensory function based on peri- and intraoperative clinical and electrophysiological data. The study was performed prospectively on a series of 20 patients suffering from either chronic neurogenic pain or spasticity. Physiological observations were made of the intraoperative evoked electrospinographic recordings as collected from the surface of the spinal cord. The MDT procedure produced analgesia or severe hypalgesia, moderate hypesthesia, and only slight deficits in proprioception and cutaneous spatial discrimination on the body segments operated on. These clinical data correlated well with evoked electrospinographic recordings, which showed a moderate effect of MDT on presynaptic compound action potentials recorded from the spinal cord (N11 and N21), a partial or even reversible effect on the cortical postcentral N20 wave, a more marked effect on the postsynaptic dorsal horn waves N13 and N24 related to large primary afferent fibers, and a disappearance of dorsal horn waves related to finer afferents (N2 and possibly N3). These data provide evidence for an acceptably selective action of MDT on spinal cord nociceptive mechanisms, and for a partial, often slight, involvement of the other somatosensory domains. The presence of abnormal evoked electrospinographic waves is discussed in relation to the mechanisms of neurogenic pain and spasticity. The hypothesis of a “retuning” of the dorsal horn as the mode of action of MDT is presented.


1994 ◽  
Vol 80 (6) ◽  
pp. 1116-1120 ◽  
Author(s):  
Blaine S. Nashold ◽  
Amr O. El-Naggar ◽  
Janice Ovelmen-Levitt ◽  
Muwaffak Abdul-Hak

✓ Two new right-angled electrodes have been designed for use at the dorsal root entry zone (DREZ) of the caudalis nucleus to provide relief of chronic facial pain. The electrode design was based on an anatomical study of the human caudalis nucleus at the cervicomedullary junction. Previously, caudalis nucleus DREZ operations were often followed by ipsilateral ataxia, usually in the arm. The new electrodes have significantly reduced this complication. A group of 21 patients with varied types of chronic facial pain have been treated, with pain relief in 70%.


1993 ◽  
Vol 78 (4) ◽  
pp. 598-602 ◽  
Author(s):  
Eugene Rossitch ◽  
M. Abdulhak ◽  
Janice Ovelmen-Levitt ◽  
M. Levitt ◽  
Blaine S. Nashold

✓ Extensive longitudinal lesions of the dorsal root entry zone (DREZ) are effective in relieving some chronic deafferentation pain in humans. A deafferentation syndrome follows C5—T2 dorsal root ganglionectomies in rats. The syndrome consists of biting and scratching the completely and partially denervated limb areas, respectively. This study examines the effect of DREZ lesions on the deafferentation syndrome in the rat. Of 37 rats, 24 underwent C5—T2 ganglionectomies only, five received C4—T3 micromechanical DREZ lesions only, and eight underwent ganglionectomies plus simultaneous DREZ lesions. The animals were observed for 45 days postoperatively. Histological analysis of the spinal cord lesions was performed. All rats with ganglionectomies alone exhibited the deafferentation syndrome; however, no rats with DREZ lesions alone showed this feature. Only 25% of rats with combined ganglionectomies and DREZ lesions exhibited the deafferentation syndrome in the first 30 days, whereas 80% of the animals with ganglionectomies only did so. Although 75% of the animals with combined lesions eventually bit the insensitive forepaw, this behavior was significantly attenuated: the day of onset was delayed and the extent of self-mutilation was reduced. Postmortem histological examination of the DREZ lesions indicated a close association between the completeness of the dorsal horn destruction and the reduction or prevention of self-mutilation. These data support the validity of the animal model and also the hypothesis stating that the deafferentation syndrome results from abnormal spontaneous neural activity in the dorsal horn. Moreover, the variability of the histological findings in these experiments stresses the importance of making contiguous and complete dorsal horn lesions in human DREZ surgery.


2005 ◽  
Vol 102 (6) ◽  
pp. 1018-1028 ◽  
Author(s):  
Marc P. Sindou ◽  
Eric Blondet ◽  
Evelyne Emery ◽  
Patrick Mertens

Object. Most patients with preganglionic lesions after brachial plexus injuries suffer pain that is hard to control through medication or neuromodulation. Lesioning in the dorsal root entry zone (DREZ) is undeniably effective. Fifty-five patients who had undergone the so-called microsurgical DREZotomy (MDT) procedure were studied with the two following objectives: 1) to describe the anatomical lesions observed during MDT in correlation with sensory deficits and pain features; and 2) to analyze the results in the 44 patients who were followed for more than 1 year (mean 6 years). Methods. The observed lesions were severe: 79.6% of ventral and 78.2% of dorsal roots from C5—T1 were impaired. Damage extended to all five roots in 42% of patients. Strong arachnoiditis was present in 38.2%, pseudomeningoceles in 31%, spinal cord distortion and/or atrophy in 49%, and abundant gliotic tissue and/or microcavitations within the dorsal horn at the avulsed segments in 36.4% of cases. Sensory deficit corresponded to the entire territory of the dorsal root lesions in 52% of patients, but was larger in 30% most certainly due to the associated extrarachidian lesions. At the last evaluation after MDT, 66% of patients showed excellent (total relief without medication) or good (total relief with medication) pain relief and 71% experienced an improvement in activity level. Conclusions. Apart from other indications not addressed in this article, MDT can be performed to treat refractory pain due to brachial plexus avulsions. The long-term efficacy of this procedure strongly indicates that pain after brachial plexus avulsion originates from the deafferented (and gliotic) dorsal horn.


1983 ◽  
Vol 59 (5) ◽  
pp. 884-886 ◽  
Author(s):  
Walter J. Levy ◽  
Alan Nutkiewicz ◽  
Q. Michael Ditmore ◽  
Clark Watts

✓ Dorsal root entry zone lesions have been documented as effective for control of intractable pain in patients with brachial plexus avulsion or severe spinal cord injury. These lesions are usually made with the radiofrequency technique. The authors report three cases in which the CO2 laser was used as an alternative means of making the lesions. This latter technique provided effective pain relief in two of the patients and was efficient to use. It was noted that the presence of overlying scar tissue can be deceptive in judging the depth of the lesion made with the laser. The CO2 laser provided a means of producing controlled spinal cord lesions which may be more precise than the radiofrequency method.


Sign in / Sign up

Export Citation Format

Share Document